1
|
Jia Y, Wang Y, Zhao G, Yang Y, Yan W, Wang R, Han B, Wang L, Zhang Z, Chen L, Lemoine NR, Chard Dunmall LS, Wang P, Wang Y. Novel oncolytic vaccinia virus armed with interleukin-27 is a potential therapeutic agent for the treatment of murine pancreatic cancer. J Immunother Cancer 2025; 13:e010341. [PMID: 40350204 PMCID: PMC12067774 DOI: 10.1136/jitc-2024-010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Pancreatic cancer has a complex immunosuppressive tumor microenvironment (TME), which is highly resistant to conventional therapies and emerging cancer immunotherapies. Oncolytic viruses are multifaceted killers of malignant tumors, which can selectively infect, replicate in and lyse tumor cells, release tumor-associated antigens to stimulate specific antitumor immune responses, and recruit immune cells into the TME, turning "cold" tumors "hot". Here, we report a novel vaccinia virus (VV), VVLΔTKΔN1LΔA41L (with deletion of thymidine kinase (TK), N1L, and A41L genes) armed with interleukin 27 (IL-27), that can cure established tumors and promote long-term antitumor immunity in murine pancreatic cancer tumor models. METHODS A novel oncolytic VV with deletion of the TK, N1L, and A41L genes, and expression of the red fluorescent protein (RFP) gene (VVL-TD-RFP) was constructed using CRISPR-Cas9-based homologous recombination. This virus was armed with IL-27, creating VVL-TD-IL-27. The characteristics of these viruses were evaluated in vitro using viral replication assays, cytotoxicity assays and ELISA. The antitumor effects of VVL-TD-IL-27 were evaluated using a variety of pancreatic cancer tumor models in vivo, and the mechanisms of antitumor effects were explored using flow cytometry, immunohistochemistry, ELISA and quantitative PCR. RESULTS VVL-TD-RFP cured 71.4% of tumor-bearing mice, compared with 14.3% of animals treated with VVLΔTKΔN1L that does not have an A41L gene deletion. Efficacy was mainly dependent on elevated dendritic cell (DC) populations, activation of DC, CD86+ DC, and CD8+ effector memory T cells in the TME. Efficacy was further enhanced by arming VVL-TD-RFP with IL-27, which resulted in a cure rate of 100% and promoted long-term antitumor immunity. VVL-TD-IL-27 treatment increased the proportion of CD8+ TEM and decreased the proportion of regulatory T cells and macrophages in tumor tissues. It also polarized macrophages to an M1 phenotype in vivo. Furthermore, IL-27 exhibits strong anti-angiogenic effects. CONCLUSIONS VVL-TD-mIL-27 is a potential immunotherapy agent for the treatment of pancreatic cancer, and a clinical study of this virus is warranted.
Collapse
Affiliation(s)
- Yangyang Jia
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanghao Zhao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong Yang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenyi Yan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing Han
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Chen
- Department of Oncology, Henan International Joint Laboratory of Lung Cancer Biology and Therapeutics, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
2
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
3
|
Jin H, Zhao YR, Huang F, Hong Z, Jia XY, Wang H, Wang YG. Vaccinia virus-mediated oncolytic immunotherapy: Emerging strategies for gastrointestinal cancer treatment at dawn. Virology 2025; 602:110303. [PMID: 39577274 DOI: 10.1016/j.virol.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Oncolytic vaccinia virus (VVs) based immunotherapy is a rapidly developing treatment for gastrointestinal (GI) cancers. Conventional treatments, such as chemotherapy, radiotherapy and surgery achieve good effects in early-stage GI cancers, but effects are limited in advanced disease. Immunotherapy has limited efficacy in GI cancers due to tumor heterogeneity and complex immunosuppressive mechanisms. Oncolytic VV immunotherapy is a novel treatment approach showing promising results in preclinical and clinical trials. Oncolytic VV's intracytoplasmic replication and assembly mechanism, diverse mature forms, and use methods make it extremely safe and versatile for drug delivery. Combining oncolytic VV with conventional therapies and immunotherapy (e.g., ICIs, CAR-T) enhances tumor regression and survival compared to monotherapies. Researchers are establishing response protocols and improvement strategies, rapidly developing VV tumor oncolytic immunotherapy. This article focuses on oncolytic vaccinia development and outlook in gastrointestinal cancer therapy, advantages when combined with other drugs to improve clinical survival, safety, and risk reduction for patients.
Collapse
Affiliation(s)
- Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Ya-Ru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Zhang Hong
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiao-Yuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan Hospital, 311201, Hangzhou, China.
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China.
| |
Collapse
|
4
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Groeneveldt C, van den Ende J, van Montfoort N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023; 70:1-12. [PMID: 36732155 DOI: 10.1016/j.cytogfr.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range of cancers, by mediating both the direct killing of tumor cells as well as mobilization of antitumor immune responses. As many OVs circulate in the human population, preexisting OV-specific immune responses are prevalent. Indeed, neutralizing antibodies (NAbs) are abundantly present in the human population for commonly used OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the effect of preexisting immunity against OVs on two distinct aspects of OV therapy; OV infection and spread, as well as the immune response induced upon OV therapy. Combined, this review provides evidence that consideration of preexisting immunity is crucial in realizing the full potential of the highly promising therapeutic implementation of OVs. Future investigation of current gaps in knowledge highlighted in this review should yield a more complete understanding of this topic, ultimately allowing for better and more personalized OV therapies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jasper van den Ende
- Master Infection & Immunity, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
6
|
Sun N, Tian Y, Chen Y, Guo W, Li C. Metabolic rewiring directs melanoma immunology. Front Immunol 2022; 13:909580. [PMID: 36003368 PMCID: PMC9393691 DOI: 10.3389/fimmu.2022.909580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma results from the malignant transformation of melanocytes and accounts for the most lethal type of skin cancers. In the pathogenesis of melanoma, disordered metabolism is a hallmark characteristic with multiple metabolic paradigms involved in, e.g., glycolysis, lipid metabolism, amino acid metabolism, oxidative phosphorylation, and autophagy. Under the driving forces of oncogenic mutations, melanoma metabolism is rewired to provide not only building bricks for macromolecule synthesis and sufficient energy for rapid proliferation and metastasis but also various metabolic intermediates for signal pathway transduction. Of note, metabolic alterations in tumor orchestrate tumor immunology by affecting the functions of surrounding immune cells, thereby interfering with their antitumor capacity, in addition to the direct influence on tumor cell intrinsic biological activities. In this review, we first introduced the epidemiology, clinical characteristics, and treatment proceedings of melanoma. Then, the components of the tumor microenvironment, especially different populations of immune cells and their roles in antitumor immunity, were reviewed. Sequentially, how metabolic rewiring contributes to tumor cell malignant behaviors in melanoma pathogenesis was discussed. Following this, the proceedings of metabolism- and metabolic intermediate-regulated tumor immunology were comprehensively dissertated. Finally, we summarized currently available drugs that can be employed to target metabolism to intervene tumor immunology and modulate immunotherapy.
Collapse
Affiliation(s)
- Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| |
Collapse
|