1
|
Shen Y, Zhang H, Xue M, Zheng C, Chen Q. HSV-1 as a gene delivery platform for cancer gene therapy. Trends Pharmacol Sci 2025; 46:324-336. [PMID: 40069043 DOI: 10.1016/j.tips.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/06/2025]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus with strong replication capabilities, a large genomic payload (≥30 kb), and low toxicity, making it a prominent vector in cancer gene therapy. Clinically approved oncolytic HSV-1 (oHSV-1) variants, such as T-VEC and G47Δ, demonstrate safety and efficacy in localized tumors, but face challenges in treating metastatic disease. To address this issue, next-generation oHSV-1 designs focus on precision targeting and immune remodeling through the delivery of multiple exogenous genes. In this review, we provide an overview of the inherent characteristics of oHSV-1 as a gene delivery platform, focusing on its genetic modification strategies, safety challenges in clinical applications, and future directions to maximize its therapeutic potential.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
2
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
3
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
4
|
Toropko M, Chuvpilo S, Karabelsky A. miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses. Pharmaceutics 2024; 16:986. [PMID: 39204331 PMCID: PMC11360794 DOI: 10.3390/pharmaceutics16080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs' toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing.
Collapse
Affiliation(s)
- Mariia Toropko
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (S.C.); (A.K.)
| | | | | |
Collapse
|
5
|
Wang H, Borlongan M, Kaufman HL, Le U, Nauwynck HJ, Rabkin SD, Saha D. Cytokine-armed oncolytic herpes simplex viruses: a game-changer in cancer immunotherapy? J Immunother Cancer 2024; 12:e008025. [PMID: 38821716 PMCID: PMC11149157 DOI: 10.1136/jitc-2023-008025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Ankyra Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Uyen Le
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
6
|
Delwar Z, Tatsiy O, Chouljenko DV, Lee IF, Liu G, Liu X, Bu L, Ding J, Singh M, Murad YM, Jia WWG. Prophylactic Vaccination and Intratumoral Boost with HER2-Expressing Oncolytic Herpes Simplex Virus Induces Robust and Persistent Immune Response against HER2-Positive Tumor Cells. Vaccines (Basel) 2023; 11:1805. [PMID: 38140209 PMCID: PMC10747554 DOI: 10.3390/vaccines11121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The development of effective cancer vaccines remains a significant challenge due to immune tolerance and limited clinical benefits. Oncolytic herpes simplex virus type 1 (oHSV-1) has shown promise as a cancer therapy, but efficacy is often limited in advanced cancers. In this study, we constructed and characterized a novel oHSV-1 virus (VG22401) expressing the human epidermal growth factor receptor 2 (HER2), a transmembrane glycoprotein overexpressed in many carcinomas. VG22401 exhibited efficient replication and HER2 payload expression in both human and mouse colorectal cancer cells. Mice immunized with VG22401 showed significant binding of serum anti-HER2 antibodies to HER2-expressing tumor cells, inducing antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, mice primed with VG22401 and intratumorally boosted with the same virus showed enhanced antitumor efficacy in a bilateral syngeneic HER2(+) tumor model, compared to HER2-null backbone virus. This effect was accompanied by the induction of anti-HER2 T cell responses. Our findings suggest that peripheral priming with HER2-expressing oHSV-1 followed by an intratumoral boost with the same virus can significantly enhance antitumor immunity and efficacy, presenting a promising strategy for cancer immunotherapy.
Collapse
|
7
|
Zhang G, Dong M, Yao X, Xia Y, Yu H, Zhou Y, Lian C, Zhang Y, Cui Y. Advancing breast cancer diagnosis with a near-infrared fluorescence imaging smart sensor for estrogen/progesterone receptor detection. Sci Rep 2023; 13:21086. [PMID: 38030755 PMCID: PMC10687265 DOI: 10.1038/s41598-023-48556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular-genetic imaging has greatly advanced clinical diagnosis and prognosis monitoring. However, the specific visualization of intracellular proteins such as estrogen receptor (ER) and progesterone receptor (PR) remains an elusive goal. Here, we highlight a novel method for selectively detecting ER/PR positive tumors using genetically engineered responsive elements. Our study demonstrates that the double responsive elements of ER/PR exhibit the most sensitivity to the steroid receptors in breast cancers. By utilizing a cationic polymer vector, we constructed a responsive element-fluorescence protein system that can selectively image ER/PR positive breast cancers in murine models under a near-infrared laser. This non-invasive imaging achieved high-resolution detection without death or serious anaphylactic activity in the animals. Our findings suggest that the reporter system consisting of steroid receptor response elements and near-infrared proteins provides a practical system for identifying biomarkers and advancing cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xiulei Yao
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yuke Xia
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Han Yu
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yu Zhou
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Chao Lian
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yunlei Zhang
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China.
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211100, China.
| | - Yiyao Cui
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China.
| |
Collapse
|