1
|
Homa K, Zakrzewski W, Dobrzyński W, Piszko PJ, Piszko A, Matys J, Wiglusz RJ, Dobrzyński M. Surface Functionalization of Titanium-Based Implants with a Nanohydroxyapatite Layer and Its Impact on Osteoblasts: A Systematic Review. J Funct Biomater 2024; 15:45. [PMID: 38391898 PMCID: PMC10889183 DOI: 10.3390/jfb15020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate the influence of a nanohydroxyapatite layer applied to the surface of titanium or titanium alloy implants on the intricate process of osseointegration and its effect on osteoblast cell lines, compared to uncoated implants. Additionally, the investigation scrutinizes various modifications of the coating and their consequential effects on bone and cell line biocompatibility. On the specific date of November 2023, an exhaustive electronic search was conducted in esteemed databases such as PubMed, Web of Science, and Scopus, utilizing the meticulously chosen keywords ((titanium) AND ((osteoblasts) and hydroxyapatite)). Methodologically, the systematic review meticulously adhered to the PRISMA protocol. Initially, a total of 1739 studies underwent scrutiny, with the elimination of 741 duplicate records. A further 972 articles were excluded on account of their incongruence with the predefined subjects. The ultimate compilation embraced 26 studies, with a predominant focus on the effects of nanohydroxyapatite coating in isolation. However, a subset of nine papers delved into the nuanced realm of its modifiers, encompassing materials such as chitosan, collagen, silver particles, or gelatine. Across many of the selected studies, the application of nanohydroxyapatite coating exhibited a proclivity to enhance the osseointegration process. The modifications thereof showcased a positive influence on cell lines, manifesting in increased cellular spread or the attenuation of bacterial activity. In clinical applications, this augmentation potentially translates into heightened implant stability, thereby amplifying the overall procedural success rate. This, in turn, renders nanohydroxyapatite-coated implants a viable and potentially advantageous option in clinical scenarios where non-modified implants may not suffice.
Collapse
Affiliation(s)
- Karolina Homa
- Niepubliczny Zakład Opieki Zdrowotnej Medident, Żeromskiego 2A, 43-230 Goczalkowice-Zdroj, Poland
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Zakrzewski
- Pre-clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wroclaw, Poland
| | - Wojciech Dobrzyński
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Oral Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Rafal J Wiglusz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
2
|
Characterization of Hydroxyapatite Film Obtained by Er:YAG Pulsed Laser Deposition on Sandblasted Titanium: An In Vitro Study. MATERIALS 2022; 15:ma15062306. [PMID: 35329758 PMCID: PMC8955651 DOI: 10.3390/ma15062306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.
Collapse
|
3
|
Pang K, Seo YK, Lee JH. Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants. J Korean Assoc Oral Maxillofac Surg 2021; 47:454-464. [PMID: 34969019 PMCID: PMC8721409 DOI: 10.5125/jkaoms.2021.47.6.454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. MATERIALS AND METHODS To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BMMSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. RESULTS In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. CONCLUSION These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.
Collapse
Affiliation(s)
- KangMi Pang
- Department of Dentistry, Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, , Seoul, Korea
- Dental Life Science Research Institute and Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
4
|
Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater 2019; 83:425-434. [PMID: 30342285 DOI: 10.1016/j.actbio.2018.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
The combination of kappa-carrageenan (κ-CG) and hydroxyapatite (HA) to generate a bone substitute material has been underexplored to date. Carrageenans (CGs) have remarkable characteristics such as biocompatibility, hydrophilicity, and structural similarities with natural glycosaminoglycans (GAGs), and they have demonstrated the ability to stimulate cellular adhesion and proliferation. Hydroxyapatite nanoparticles have been one of the most investigated materials for bone regeneration due to their excellent biocompatibility, bioactivity and osteoconductivity. In particular, this study presents an approach for the preparation of new bioactive composites of κ-CG/nHA for numerous bone regeneration applications. We performed a set of in vitro experiments to evaluate the influence of the bone substitutes on human osteoblasts. Cell culture studies indicated that all samples tested were cytocompatible. Relative to control substrates, cellular attachment and proliferation were better on all the scaffold surfaces that were tested. The S2 and S3 samples, those permeated by 1.5 and 2.5 wt% of CG, respectively, exhibited an enhancement in cell spreading capacity compared to the S1 test materials which were comprised of 1 wt% of CG. Excellent osteoblast viability and adhesion were observed for each of the tested materials. Additionally, the bone substitutes developed for this study presented a distinct osteoconductive environment. Data supporting this claim were derived from alkaline phosphatase (ALP) and calcium deposition analyses, which indicated that, compared to the control species, ALP expression and calcium deposition were both improved on test κ-CG/nHA surfaces. In summary, the injectable bone substitute developed here demonstrated great potential for numerous bone regeneration applications, and thus, should be studied further. STATEMENT OF SIGNIFICANCE: The novelty of this work lies in the determination of the in vitro cytocompatibility behavior of carrageenan and hydroxyapatite composite materials used as injectable bone substitutes. This injectable biomaterial can fill in geometric complex defects, and it displays bioactivity as well as high bone regeneration capacity. In this study, we evaluated the behaviors of osteoblast cells in contact with the scaffolds, including cellular adhesion and proliferation, cellular metabolism, and mineralization on the fabricated injectable bone substitutes. The results show than the carrageenan and hydroxyapatite substitutes provided a biomaterial with a great capacity for promoting cellular growth, adhesion, and proliferation, as well as contributing an osteoinductive environment for osteoblast differentiation and osteogenesis.
Collapse
|
5
|
González Ocampo JI, Bassous N, Ossa Orozco CP, Webster TJ. Evaluation of cytotoxicity and antimicrobial activity of an injectable bone substitute of carrageenan and nano hydroxyapatite. J Biomed Mater Res A 2018; 106:2984-2993. [PMID: 30367558 DOI: 10.1002/jbm.a.36488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 01/27/2023]
Abstract
A successful post-surgical implant is associated with accelerated recovery periods, involving the efficient regeneration of lost or non-viable tissue and a reduction in microbial growth. Alternatively, the long-term success of an implant is guided by the selection of an engineered biomimetic material that is biocompatible, non-biodegradable, and stable at the site of implantation, without invoking any non-essential or undesirable biological responses. The potential for developing an injectable bone substitute (IBS) was investigated here. In particular, carrageenan (CG) and nano-hydroxyapatite (nHA) injectable composites were fabricated by chemical cross-linking, and the in vitro behavior of mammalian cells and bacteria on the IBS surface structures were evaluated. Formulations consisting of 1%, 1.5%, and 2.5% CG and 60% nHA by weight were then evaluated for their interactions with human osteoblasts (or bone forming cells). MTS viability testing indicated that osteoblast adhesion and viability on the IBS were excellent and uniform among various formulation types. Bacteria assays were also performed to assess antimicrobial functions on the CG/nHA composite against both Gram-negative and Gram-positive strains. A higher CG content, as found in some samples, correlated with improved Pseudomonas aeruginosa growth inhibition, although other bacteria strains appeared unaffected by the IBS. In summary, this study highlights CG/nHA composites as innovative biomaterials that should be further studied for reduced bacteria activity and promoted osteoblast responses which was achieved without using pharmaceutical drugs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2984-2993, 2018.
Collapse
Affiliation(s)
- Jazmín I González Ocampo
- Biomaterials Research Group, Bioengineering Program, Engineering Faculty, University of Antioquia, Medellin, Colombia
| | - Nicole Bassous
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Claudia P Ossa Orozco
- Biomaterials Research Group, Bioengineering Program, Engineering Faculty, University of Antioquia, Medellin, Colombia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
6
|
Wang Y, Zhang C, Xu W, Wang B, Lan Y, Yu M, Wang P, Xie Z. The effect of surface immobilized NBD peptide on osteoclastogenesis of rough titanium plates in vitro and osseointegration of rough titanium implants in ovariectomized rats in vivo. RSC Adv 2018; 8:22853-22865. [PMID: 35539717 PMCID: PMC9081414 DOI: 10.1039/c8ra03116a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts. Osteoporosis up-regulates osteoclast activity, so it is desirable to find effective interventions to inhibit osteoclastogenesis and enhance the osseointegration of implants under these conditions. It has been reported that the NF-κB essential modulator (NEMO)-binding domain (NBD) peptide can prevent osteoclast formation and bone resorption. In this study, we conjugated NBD peptide onto the surface of rough pure titanium (Ti) using the layer by layer technique. We analyzed the surface characteristics and determined the successful NBD integration by the presence of trivial granular structures, increased S elements and hydrophilia. Importantly, we first reported that Ti surface-conjugated NBD peptide retained its inhibitory effects on osteoclastogenesis by reducing osteoclast sealing zone formation and function. These effects were mediated by a reduction in NFATc1 expression, which in turn regulated integrin ανβ3 and MMP9 by targeting the P65 signaling pathway. In vivo TRAP staining suggested NBD-coating decreased osteoclast formation with less pseudopodia. Micro-CT and histomorphometric analysis demonstrated that NBD-coating enhanced pronounced osseointegration in vivo in ovariectomized rats. This study holds great promise for in vivo use of immobilized NBD peptide and offers an effective therapeutic approach to select more suitable Ti-implant surface modifications for improving implant osseointegration in osteoporotic patients. Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts.![]()
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Chen Zhang
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Weijian Xu
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Baixiang Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Yanhua Lan
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Mengfei Yu
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Pinger Wang
- Zhejiang Chinese Medical University Hangzhou P. R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| |
Collapse
|
7
|
Fu DL, Jiang QH, He FM, Fu BP. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Alhilou A, Do T, Mizban L, Clarkson BH, Wood DJ, Katsikogianni MG. Physicochemical and Antibacterial Characterization of a Novel Fluorapatite Coating. ACS OMEGA 2016; 1:264-276. [PMID: 27656690 PMCID: PMC5026462 DOI: 10.1021/acsomega.6b00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Peri-implantitis remains the major impediment to the long-term use of dental implants. With increasing concern over the growth in antibiotic resistance, there is considerable interest in the preparation of antimicrobial dental implant coatings that also induce osseointegration. One such potential coating material is fluorapatite (FA). The aim of this study was to relate the antibacterial effectiveness of FA coatings against pathogens implicated in peri-implantitis to the physicochemical properties of the coating. Ordered and disordered FA coatings were produced on the under and upper surfaces of stainless steel (SS) discs, respectively, using a hydrothermal method. Surface charge, surface roughness, wettability, and fluoride release were measured for each coating. Surface chemistry was assessed using X-ray photoelectron spectroscopy and FA crystallinity using X-ray diffraction. Antibacterial activity against periodontopathogens was assessed in vitro using viable counts, confocal microscopy, and scanning electron microscopy (SEM). SEM showed that the hydrothermal method produced FA coatings that were predominately aligned perpendicular to the SS substrate or disordered FA coatings consisting of randomly aligned rodlike crystals. Both FA coatings significantly reduced the growth of all examined bacterial strains in comparison to the control. The FA coatings, especially the disordered ones, presented significantly lower charge, greater roughness, and higher area when compared to the control, enhancing bacteria-material interactions and therefore bacterial deactivation by fluoride ions. The ordered FA layer reduced not only bacterial viability but adhesion too. The ordered FA crystals produced as a potential novel implant coating showed significant antibacterial activity against bacteria implicated in peri-implantitis, which could be explained by a detailed understanding of their physicochemical properties.
Collapse
Affiliation(s)
- Ahmed Alhilou
- Biomaterials
and Tissue Engineering Research Group and Microbiology and Cell Biology Research
Group, School of Dentistry, University of
Leeds, Clarendon Way, Leeds LS2 9LU, West Yorkshire, U.K.
| | - Thuy Do
- Biomaterials
and Tissue Engineering Research Group and Microbiology and Cell Biology Research
Group, School of Dentistry, University of
Leeds, Clarendon Way, Leeds LS2 9LU, West Yorkshire, U.K.
| | - Laith Mizban
- Biomaterials
and Tissue Engineering Research Group and Microbiology and Cell Biology Research
Group, School of Dentistry, University of
Leeds, Clarendon Way, Leeds LS2 9LU, West Yorkshire, U.K.
| | - Brian H. Clarkson
- Cariology,
Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, United States
| | - David J. Wood
- Biomaterials
and Tissue Engineering Research Group and Microbiology and Cell Biology Research
Group, School of Dentistry, University of
Leeds, Clarendon Way, Leeds LS2 9LU, West Yorkshire, U.K.
| | - Maria G. Katsikogianni
- Biomaterials
and Tissue Engineering Research Group and Microbiology and Cell Biology Research
Group, School of Dentistry, University of
Leeds, Clarendon Way, Leeds LS2 9LU, West Yorkshire, U.K.
- Advanced
Materials Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, U.K.
| |
Collapse
|
9
|
Dorozhkin SV. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
10
|
Besinis A, De Peralta T, Tredwin CJ, Handy RD. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS NANO 2015; 9:2255-2289. [PMID: 25625290 DOI: 10.1021/nn505015e] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure.
Collapse
Affiliation(s)
| | - Tracy De Peralta
- ‡Plymouth University Peninsula Dental School, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, U.K
| | - Christopher J Tredwin
- ‡Plymouth University Peninsula Dental School, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, U.K
| | | |
Collapse
|