1
|
Gedeonová D, Bianchi C, Štembírek J, Hrdinka M, Chyra Z, Buchtová M, Hurník P, Blažek T, Režnarová J. BRCA1 and BRCA2 as prognostic markers in oral squamous cell carcinoma: a minireview. Front Oncol 2025; 15:1528822. [PMID: 40224184 PMCID: PMC11986421 DOI: 10.3389/fonc.2025.1528822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC), a subset of head and neck cancers, primarily originates in the epithelial tissues of the oral cavity. Despite advancements in treatment, the mortality rate for OSCC remains around 50%, underscoring the urgent need for improved prognostic markers. This review explores the role of the BRCA1 and BRCA2 genes-traditionally associated with breast and ovarian cancers-in the context of OSCC. We discuss the molecular pathways involving BRCA genes, their potential as diagnostics and prognostic biomarkers, and their implications for personalized treatment strategies, including addressing chemotherapy resistance. Furthermore, this review emphasizes the significance of genome stability in cancer progression and examines both current and emerging methodologies for detecting BRCA mutations in OSCC patients. Despite limited prevalence of BRCA mutations in OSCC compared to other cancers, their role in DNA repair and therapeutic response underscores their potential as clinical biomarkers. However, standardized, multicenter studies are still needed to validate their utility in OSCC management. A better understanding of the role of BRCA genes in OSCC could pave the way for more effective therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Dominika Gedeonová
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Department of Craniofacial Surgery, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Claretta Bianchi
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Health Research Centre, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Department of Craniofacial Surgery, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Matouš Hrdinka
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Health Research Centre, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
- Department of Hematology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Hurník
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Tomáš Blažek
- Clinic of Oncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jana Režnarová
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Health Research Centre, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
2
|
Naeem W, Nawab F, Sarwar MT, Khalil AT, Gaber DA, Ahmad H, Fazeel M, Alorini M, Khan IA, Irfan M, Khan M, Khurram SA, Ali A. Profiling genetic mutations in the DNA damage repair genes of oral squamous cell carcinoma patients from Pakistan. Sci Rep 2025; 15:7896. [PMID: 40050371 PMCID: PMC11885471 DOI: 10.1038/s41598-025-91700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Herein, we reported mutations in five DNA Damage Repair (DDR) i.e., TP53, ATR, ATM, CHEK1 and CHEK2 involved in OSCC using NG-WES and their analysis using bioinformatics tools. Out of 42 identified mutations, 16.7% are reported for the 1st time. A total of 28 nonsynonymous SNVs are identified. TP53 harbored the highest number of mutations followed by ATM, ATR, CHEK1 and CHEK2. Nine mutations (TP53p.R43H, TP53p.L125Q, TP53p.R116Q, TP53p.C110Y, TP53p.L62F, ATRp.H120Y, ATMp.P1054R, ATMp.D1853V, ATMp.T2934N) were predicted highly pathogenic. SAAFEQ-SEQ predicted destabilizing effects for all mutations, while ISPRED-SEQ identified 09 IS mutations, 07 on TP53, 01 in ATR and 01 in CHEK1 with no IS mutations predicted for ATM and CHEK2. Among the IS mutations, only SNVs were used in MDS simulations. The gyration radius for all IS SNVs was larger for mutant as compared to the wild type indicating perturbed folding behavior of the mutant proteins. Structural deviations across the carbon back bone were noted by RMSD for mutant and wild type. The TP53 IS mutations include TP53p.R116Q, TP53 p.C110Y, TP53p.R43H, TP53p.E214X, TP53p.R210X, TP53 p.C110Afs*5 and TP53 p,S108Ffs*23 whereas ATR and CHEK1 IS mutations consist of ATRp.M1932T and CHEK1p.E76Kfs*21. ConSurf analysis revealed four SNVs with a high conservation score (9) on TP53 and ATM. TP53p.P33R was predominantly associated with moderately differentiated tumors (84.60%), naswar users (86.60%) and positive family history of cancer (91.60%). The TP53p.P33R, ATRp.M211T and CHEK1p.I437V mutations were found recurrently in 21/27 (77.7%), 20/27 (74.04%), and 27/27 (100%) patients, suggesting its potential biomarker applications in local screening.
Collapse
Affiliation(s)
- Wafa Naeem
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Fouzia Nawab
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Muhammad Tahir Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution (LRH-MTI), Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Dalia Ali Gaber
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- College of Medicine, Gulf Medical University, Ajman, UAE
| | - Hilal Ahmad
- Institute of Basic Medical Sciences, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan
| | - Muhammad Fazeel
- Phelma Grenoble INP, Université Grenoble Alpes, Grenoble, France
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Ishtiaq Ahmad Khan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Irfan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muslim Khan
- Department of Oral and Maxillofacial Surgery, Khyber College of Dentistry, Peshawar, Pakistan
| | - Syed Ali Khurram
- School of Clinical Dentistry, Faulty of Health, University of Sheffield, Sheffield, S10 2TA, UK.
| | - Asif Ali
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia.
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Peshawar, 25000, Pakistan.
- School of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Arvindh S, Priyadarshini M, Baba AB, Veeravarmal V, Mishra R, Dash R, Nagini S. The Neem Limonoid Nimbolide Modulates Key Components of the DNA Damage Response Signalling in Cellular and Animal Models of Oral Squamous Cell Carcinoma. Curr Pharm Biotechnol 2025; 26:428-442. [PMID: 38561609 DOI: 10.2174/0113892010291998240321074920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Deregulated DNA damage response (DDR) network is implicated in cancer progression and therapy resistance. OBJECTIVE The present study was designed to investigate whether nimbolide, an anticancer neem limonoid, targets key components of the DDR signalling pathway in cellular and animal models of oral squamous cell carcinoma (OSCC). METHODS OSCC cells (SCC-4 and SCC-9), 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinoma model, chemoresistant OSCC patient-derived xenograft (PDX) model established in athymic nude mice, and tissue sections from patients with oral premalignant/malignant disease were used for the study. Key molecules that orchestrate the DDR, including the MRN complex, ATM, DNA-PKcs, H2AX, and p53, were analysed by qRTPCR, immunoblotting, immunofluorescence, and immunohistochemistry. Cell proliferation and apoptosis indices were evaluated. RESULTS Nimbolide significantly reduced 8-oxodG levels, expression of MRN, ATMS1891, and γ- H2AX, with an increase in p-p53S15 in OSCC cells as well as in the HBP model. Nimbolide potentiated the effect of KU-55933 in ATM inhibition. In the PDX model, nimbolide suppressed tumor formation, stimulated DDR and apoptosis, inhibited cell proliferation, and enhanced sensitivity to cisplatin. Analysis of p-ATM expression revealed a significant increase during the sequential progression of hamster and human OSCC. CONCLUSION This study provides compelling evidence that nimbolide functions as a DDR inhibitor in cellular and hamster OSCC models and as a DDR activator in the PDX model primarily by targeting ATM. Small molecules like nimbolide that modulate DDR are of immense benefit in cancer therapy. The study has also unveiled p-ATM as a promising biomarker of tumour progression in human OSCCs.
Collapse
Affiliation(s)
- Soundararajan Arvindh
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | | | - Abdul Basit Baba
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India
| | - Veeran Veeravarmal
- Division of Oral and Maxillofacial Pathology, Government Dental College and Hospital, Cuddalore District, 608 002, Tamil Nadu, India
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, Jharkhand, India
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| |
Collapse
|
4
|
Prime SS, Darski P, Hunter KD, Cirillo N, Parkinson EK. A Review of the Repair of DNA Double Strand Breaks in the Development of Oral Cancer. Int J Mol Sci 2024; 25:4092. [PMID: 38612901 PMCID: PMC11012950 DOI: 10.3390/ijms25074092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Piotr Darski
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Keith D. Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
5
|
Schuch LF, De Arruda JAA, Viana KSS, Caldeira PC, Abreu MHNG, Bernardes VF, Aguiar MCFD. DNA damage-related proteins in smokers and non-smokers with oral cancer. Braz Oral Res 2022; 36:e027. [DOI: 10.1590/1807-3107bor-2022.vol36.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022] Open
|
6
|
Georgaki M, Theofilou VI, Pettas E, Stoufi E, Younis RH, Kolokotronis A, Sauk JJ, Nikitakis NG. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:566-579. [PMID: 34518141 DOI: 10.1016/j.oooo.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
The pathogenesis of oral cancer is a complex and multifactorial process that requires a deep understanding of the underlying mechanisms involved in the development and progress of malignancy. The ever-improving comprehension of the diverse molecular characteristics of cancer, the genetic and epigenetic alterations of tumor cells, and the complex signaling pathways that are activated and frequently cross talk open up promising horizons for the discovery and application of diagnostic molecular markers and set the basis for an era of individualized management of the molecular defects underlying and governing oral premalignancy and cancer. The purpose of this article is to review the key molecular concepts that are implicated in oral carcinogenesis, especially focusing on oral squamous cell carcinoma, and to review selected biomarkers that play a substantial role in controlling the so-called "hallmarks of cancer," with special reference to recent advances that shed light on their deregulation during the different steps of oral cancer development and progression.
Collapse
Affiliation(s)
- Maria Georgaki
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Ionas Theofilou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Efstathios Pettas
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleana Stoufi
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John J Sauk
- Professor Emeritus and Dean Emeritus, University of Louisville, Louisville, KY, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Toprani SM, Kelkar Mane V. A short review on DNA damage and repair effects in lip cancer. Hematol Oncol Stem Cell Ther 2021; 14:267-274. [PMID: 33626329 DOI: 10.1016/j.hemonc.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022] Open
Abstract
Increasing trend in oral cancer (0.6% per year) and its related mortality has been reported worldwide since 2010. The United States alone reports an increase of 57% within the past 10 years. This emphasizes the need not only for designing strategies of prevention and planning but also for an effective treatment regime for the various oral cancers. Cancers of the lips, tongue, cheeks, floor of the mouth, and hard palate have been primarily classified under the category of oral cancers. If left undiagnosed, these cancers can be life threatening. Amongst these, the most undesignated and understudied cancer type is the lip carcinoma, which is either categorized under oral cancer or/as well as skin cancer or head and neck cancer. However, lip cancer corresponds to 25-30% of all diagnosed oral cancers. Though the etiology of lip cancer is not yet fully understood, numerous risk factors involved in its development are now being studied. The cells in the lip region are continuously exposed to various DNA damaging agents from endogenous as well as exogenous sources. Flaws in DNA repair mechanisms involved in eliminating these damages may be linked to the origin of carcinogenesis. Accumulation of DNA damage and defect in repair mechanisms may play a role in lip carcinogenesis and progression. This literature review is an exhaustive compilation of the research work performed on the role of DNA damage and repair responses in lip carcinoma which will pave a path for researchers to identify predictive DNA repair biomarker/s for lip cancer, and its diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Sneh M Toprani
- Department of Biotechnology, University of Mumbai, Mumbai, India; John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Varsha Kelkar Mane
- John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
8
|
Almazyad A, Li CC, Woo SB. Benign Alveolar Ridge Keratosis: Clinical and Histopathologic Analysis of 167 Cases. Head Neck Pathol 2020; 14:915-922. [PMID: 32180128 PMCID: PMC7669959 DOI: 10.1007/s12105-020-01151-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022]
Abstract
Benign alveolar ridge keratosis (BARK), the intraoral counterpart of cutaneous lichen simplex chronicus, is a reactive hyperkeratosis caused by trauma or friction that presents as a poorly demarcated white papule or plaque on the keratinized mucosa of the retromolar pad or alveolar ridge mucosa (often edentulous). This is a clinical and histopathologic analysis of BARK including evaluation of p53 expression in selected cases. One hundred and sixty-seven cases of BARK were identified from 2016 to 2017 and 112 (67.1%) occurred in males with a median age of 56 years (range 15-86). The retromolar pad was affected in 107 (64.1%) cases and the edentulous alveolar mucosa in 60 (35.9%) cases, with 17.4% of the cases presenting bilaterally. BARK showed hyperkeratosis often with wedge-shaped hypergranulosis and occasional focal parakeratosis. The epithelium exhibited acanthosis and surface corrugation with tapered rete ridges often interconnected at the tips. The study for p53 performed in 12 cases showed less than 25% nuclear positivity. BARK is a distinct benign clinicopathologic entity caused by friction, which should be clearly distinguished from true leukoplakia, a potentially malignant disorder.
Collapse
Affiliation(s)
- Asma Almazyad
- grid.38142.3c000000041936754XDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02215 USA ,grid.412149.b0000 0004 0608 0662Maxillofacial Surgery and Diagnostic Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Chia-Cheng Li
- grid.38142.3c000000041936754XDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02215 USA ,grid.214458.e0000000086837370Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI USA
| | - Sook-Bin Woo
- grid.38142.3c000000041936754XDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02215 USA ,Center for Oral Pathology, StrataDx, Lexington, MA USA
| |
Collapse
|
9
|
Abstract
Leukoplakia and erythroplakia are two entities under the moniker of "oral potentially malignant disorders" that are highly associated with the presence of oral epithelial dysplasia (OED) at first biopsy, while lesions of submucous fibrosis develop OED after being present for years. Importantly, traumatic/frictional keratoses are often mistaken clinically for leukoplakia and it is important for the pathologist to recognize and report them as such. The features of OED have been well-described and other architectural features will be discussed here, in particular verrucous and papillary architecture, bulky epithelial proliferation and epithelial atrophy. Proliferative leukoplakia, verrucous or otherwise, often show only hyperkeratosis in early lesions, with development of OED occurring over time, and squamous cell carcinoma developing in the majority of cases over time. The concept of hyperkeratosis without features of OED and that is not reactive, is likely a precursor to the dysplastic phenotype. Many cases of leukoplakia exhibiting OED are associated with a band of lymphocytes at the interface and these should not be mistaken for oral lichen planus.
Collapse
Affiliation(s)
- Sook-Bin Woo
- Harvard School of Dental Medicine, Boston, MA USA ,Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, 1620 Tremont Street, Suite 3-028, Boston, MA 02120 USA ,StrataDx, Lexington, MA USA
| |
Collapse
|