1
|
Nikkuni Y, Nishiyama H, Hayashi T. Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to 18F-FDG-PET Radiomics. Biomedicines 2024; 12:1411. [PMID: 39061984 PMCID: PMC11273837 DOI: 10.3390/biomedicines12071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The histological grade of oral squamous cell carcinoma affects the prognosis. In the present study, we performed a radiomics analysis to extract features from 18F-FDG PET image data, created machine learning models from the features, and verified the accuracy of the prediction of the histological grade of oral squamous cell carcinoma. The subjects were 191 patients in whom an 18F-FDG-PET examination was performed preoperatively and a histopathological grade was confirmed after surgery, and their tumor sizes were sufficient for a radiomics analysis. These patients were split in a 70%/30% ratio for use as training data and testing data, respectively. We extracted 2993 radiomics features from the PET images of each patient. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) machine learning models were created. The areas under the curve obtained from receiver operating characteristic curves for the prediction of the histological grade of oral squamous cell carcinoma were 0.72, 0.71, 0.84, 0.74, and 0.73 for LR, SVM, RF, NB, and KNN, respectively. We confirmed that a PET radiomics analysis is useful for the preoperative prediction of the histological grade of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yutaka Nikkuni
- Division of Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (H.N.); (T.H.)
| | | | | |
Collapse
|
2
|
Fan B, Fan B, Sun N, Zou H, Gu X. A radiomics model to predict γδ T-cell abundance and overall survival in head and neck squamous cell carcinoma. FASEB J 2024; 38:e23529. [PMID: 38441524 DOI: 10.1096/fj.202301353rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.
Collapse
Affiliation(s)
- Binna Fan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Binting Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Xie Y, Wang M, Xia H, Sun H, Yuan Y, Jia J, Chen L. Development and validation of a CECT-based radiomics model for predicting IL1B expression and prognosis of head and neck squamous cell carcinoma. Front Oncol 2023; 13:1121485. [PMID: 36969073 PMCID: PMC10036854 DOI: 10.3389/fonc.2023.1121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionIt is necessary to explore a noninvasive method to stratify head and neck squamous cell carcinoma (HNSCC)’s prognosis and to seek new indicators for individualized precision treatment. As a vital inflammatory cytokine, IL1B might drive a new tumor subtype that could be reflected in overall survival (OS) and predicted using the radiomics method.MethodsA total of 139 patients with RNA-Seq data from The Cancer Genome Atlas (TCGA) and matched CECT data from The Cancer Image Archive (TCIA) were included in the analysis. The prognostic value of IL1B expression in patients with HNSCC was analyzed using Kaplan-Meier analysis, Cox regression analysis and subgroup analysis. Furthermore, the molecular function of IL1B on HNSCC was explored using function enrichment and immunocytes infiltration analyses. Radiomic features were extracted with PyRadiomics and processed using max-relevance minredundancy, recursive feature elimination, and gradient boosting machine algorithm to construct aradiomics model for predicting IL1B expression. The area under the receiver operating characteristic curve (AUC), calibration curve, precision recall (PR) curve, and decision curve analysis (DCA) curve were used to examine the performance of the model.ResultsIncreased IL1B expression in patients with HNSCC indicated a poor prognosis (hazard ratio [HR] = 1.56, P = 0.003) and was harmful in patients who underwent radiotherapy (HR = 1.87, P = 0.007) or chemotherapy (HR = 2.514, P < 0.001). Shape_Sphericity, glszm_SmallAreaEmphasis, and firstorder_Kurtosis were included in the radiomics model (AUC: training cohort, 0.861; validation cohort, 0.703). The calibration curves, PR curves and DCA showed good diagnostic effect of the model. The rad-score was close related to IL1B (P = 4.490*10-9), and shared the same corelated trend to EMT-related genes with IL1B. A higher rad-score was associated with worse overall survival (P = 0.041).DiscussionThe CECT-based radiomics model provides preoperative IL1B expression predictionand offers non-invasive instructions for the prognosis and individualized treatment of patients withHNSCC.
Collapse
Affiliation(s)
- Yang Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wang
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haibin Xia
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Yuan
- Department of Oral Radiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun Jia
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liangwen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Liangwen Chen,
| |
Collapse
|