1
|
Lavoie V, Somers GR, Mobini A, Lam E, Bradley G, Bubola J. An expansile radiolucent lesion of the maxilla in an 11-year-old male. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:323-330. [PMID: 38290956 DOI: 10.1016/j.oooo.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Affiliation(s)
- Vincent Lavoie
- Oral and Maxillofacial Pathology & Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Gino R Somers
- Division of Pathology, SickKids Hospital, Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Ashkan Mobini
- Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Ernest Lam
- Oral and Maxillofacial Radiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Grace Bradley
- Oral and Maxillofacial Pathology & Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Justin Bubola
- Oral and Maxillofacial Pathology & Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chatterjee S, Devi A, Kamboj M, Narwal A. Localization of beta catenin across the domain of odontogenic lesions: A systematic review. J Oral Pathol Med 2023; 52:904-910. [PMID: 37840228 DOI: 10.1111/jop.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND CTNNB1 gene encodes beta catenin, a transcriptional activator of Wnt pathway involved in the pathogenesis of odontogenic lesions. Though located intramembranously, its translocation into cytoplasm and nucleus could trigger cell proliferation, inhibition of apoptosis, invasion and migration of the tumour cell. MATERIALS AND METHODS Five electronic databases including MEDLINE by PubMed, Google scholar, Scopus, Trip, Cochrane library and EMBASE until 1 January 2023 without period restriction were thoroughly searched. Those articles that identified CTNNB1 mutation and beta catenin in odontogenic lesions were included for review. Risk of bias was analysed for each study using QUADAS 2 tool and Review Manager 5.3 was used to output its result. RESULTS Thirty four published articles were included for data synthesis. A total of 1092 cases of odontogenic lesions were assessed for both CTNNB1 mutation and beta catenin expression. CTNNB1 mutation was observed in ameloblastoma, calcifying odontogenic cyst, calcifying cystic odontogenic tumour and all malignant odontogenic tumours. The beta catenin expression (nuclear and cytoplasmic) was maximum in odontogenic keratocyst and calcifying odontogenic cyst. The expression was variable in ameloblastomas, membranous in odontomas, calcifying cystic odontogenic tumour and nuclear in all malignant tumours. DISCUSSION AND CONCLUSION High recurrence of odontogenic keratocyst and aggressiveness of solid ameloblastoma and malignant odontogenic tumours could be associated with the nuclear translocation of beta catenin. Disparity between CTNNB1 mutation and beta catenin expression within odontogenic lesions suggests alternate routes of beta catenin activation. The review results support the unique localisation of beta catenin as a helpful diagnostic factor in the pathogenesis of odontogenic lesions.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Oral Pathology & Microbiology, Pt. B. D Sharma University of Health Sciences, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Anju Devi
- Department of Oral Pathology & Microbiology, Pt. B. D Sharma University of Health Sciences, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Mala Kamboj
- Department of Oral Pathology & Microbiology, Pt. B. D Sharma University of Health Sciences, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Anjali Narwal
- Department of Oral Pathology & Microbiology, Pt. B. D Sharma University of Health Sciences, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| |
Collapse
|
3
|
Hurník P, Putnová BM, Ševčíková T, Hrubá E, Putnová I, Škarda J, Havel M, Res O, Cvek J, Buchtová M, Štembírek J. Metastasising ameloblastoma or ameloblastic carcinoma? A case report with mutation analyses. BMC Oral Health 2023; 23:563. [PMID: 37573343 PMCID: PMC10423427 DOI: 10.1186/s12903-023-03259-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
Collapse
Affiliation(s)
- Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Škarda
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Martin Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Oldřich Res
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
4
|
Molecular biology exploration and targeted therapy strategy of Ameloblastoma. Arch Oral Biol 2022; 140:105454. [DOI: 10.1016/j.archoralbio.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
5
|
Guimarães LM, Coura BP, Gomez RS, Gomes CC. The Molecular Pathology of Odontogenic Tumors: Expanding the Spectrum of MAPK Pathway Driven Tumors. FRONTIERS IN ORAL HEALTH 2022; 2:740788. [PMID: 35048058 PMCID: PMC8757814 DOI: 10.3389/froh.2021.740788] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Odontogenic tumors comprise a heterogeneous group of lesions that arise from the odontogenic apparatus and their remnants. Although the etiopathogenesis of most odontogenic tumors remains unclear, there have been some advances, recently, in the understanding of the genetic basis of specific odontogenic tumors. The mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) pathway is intimately involved in the regulation of important cellular functions, and it is commonly deregulated in several human neoplasms. Molecular analysis performed by different techniques, including direct sequencing, next-generation sequencing, and allele-specific qPCR, have uncovered mutations in genes related to the oncogenic MAPK/ERK signaling pathway in odontogenic tumors. Genetic mutations in this pathway genes have been reported in epithelial and mixed odontogenic tumors, in addition to odontogenic carcinomas and sarcomas. Notably, B-Raf proto-oncogene serine/threonine kinase (BRAF) and KRAS proto-oncogene GTPase (KRAS) pathogenic mutations have been reported in a high proportion of ameloblastomas and adenomatoid odontogenic tumors, respectively. In line with the reports about other neoplasms that harbor a malignant counterpart, the frequency of BRAF p.V600E mutation is higher in ameloblastoma (64% in conventional, 81% in unicystic, and 63% in peripheral) than in ameloblastic carcinoma (35%). The objective of this study was to review MAPK/ERK genetic mutations in benign and malignant odontogenic tumors. Additionally, such genetic alterations were discussed in the context of tumorigenesis, clinical behavior, classification, and future perspectives regarding therapeutic approaches.
Collapse
Affiliation(s)
- Letícia Martins Guimarães
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Pizziolo Coura
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Marín C, Niklander SE, Martínez-Flores R. Genetic Profile of Adenomatoid Odontogenic Tumor and Ameloblastoma. A Systematic Review. FRONTIERS IN ORAL HEALTH 2022; 2:767474. [PMID: 35048068 PMCID: PMC8757772 DOI: 10.3389/froh.2021.767474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To perform a comprehensive and systematic critical appraisal of the genetic alterations reported to be present in adenomatoid odontogenic tumor (AOT) compared to ameloblastoma (AM), to aid in the understanding in their development and different behavior. Methods: An electronic search was conducted in PubMed, Scopus, and Web of Science during March 2021. Eligibility criteria included publications on humans which included genetic analysis of AOT or AM. Results: A total of 43 articles reporting 59 AOTs and 680 AMs were included. Different genomic techniques were used, including whole-exome sequencing, direct sequencing, targeted next-generation sequencing panels and TaqMan allele-specific qPCR. Somatic mutations affecting KRAS were identified in 75.9% of all AOTs, mainly G12V; whereas a 71% of the AMs harbored BRAF mutations, mainly V600E. Conclusions: The available genetic data reports that AOTs and AM harbor somatic mutations in well-known oncogenes, being KRAS G12V/R and BRAFV600E mutations the most common, respectively. The relatively high frequency of ameloblastoma compared to other odontogenic tumors, such as AOT, has facilitated the performance of different sequencing techniques, allowing the discovery of different mutational signatures. On the contrary, the low frequency of AOTs is an important limitation for this. The number of studies that have a assessed the genetic landscape of AOT is still very limited, not providing enough evidence to draw a conclusion regarding the relationship between the genomic alterations and its clinical behavior. Thus, the presence of other mutational signatures with clinical impact, co-occurring with background KRAS mutations or in wild-type KRAS cases, cannot be ruled out. Since BRAF and RAS are in the same MAPK pathway, it is interesting that ameloblastomas, frequently associated with BRAFV600E mutation have aggressive clinical behavior, but in contrast, AOTs, frequently associated with RAS mutations have indolent behavior. Functional studies might be required to solve this question.
Collapse
Affiliation(s)
- Constanza Marín
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile.,Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, United Kingdom
| | - Sven E Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| | - René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
7
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
8
|
Guan P, Wong SF, Lim JQ, Ng CCY, Soong PL, Sim CQX, Ong CK, Rajasegaran V, Myint SS, Lee JY, Tan HK, Iyer NG, Soo KC, Teh BT, Tay ABG. Mutational Signatures in Mandibular Ameloblastoma Correlate with Smoking. J Dent Res 2019; 98:652-658. [PMID: 30917298 DOI: 10.1177/0022034519837248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ameloblastoma is a rare tumor of odontogenic epithelium, the low incidence rate of which precludes statistical determination of its molecular characterizations. Despite recent genomic and transcriptomic profiling, the etiology of ameloblastomas remains poorly understood. Risk factors of ameloblastoma development are also largely unknown. Whole exome sequencing was performed on 11 mandibular ameloblastoma samples. We identified 2 convergent mutational signatures in ameloblastoma: 1) a signature found in multiple types of lung cancers with probable etiology of tobacco carcinogens (COSMIC signature 4) and 2) a signature present in gingivobuccal oral squamous cell carcinoma and correlated with tobacco-chewing habits (COSMIC signature 29). These mutational signatures highlight tobacco usage or related mutagens as one possible risk factor of ameloblastoma, since the association of BRAF mutations and smoking was demonstrated in multiple studies. In addition to BRAF hotspot mutations (V600E), we observed clear inter- and intratumor heterogeneities. Interestingly, prior to BRAF mutation, important genes regulating odontogenesis mutated (e.g., corepressor BCOR), possibly playing important roles in tumorigenesis. Furthermore, recurrent mutations in the CDC73 gene, the germline mutations of which predispose patients to the development of jaw tumors, were found in 2 patients, which may lead to recurrence if not targeted by therapeutic drugs. Our unbiased profiling of coding regions of ameloblastoma genomes provides insights to the possible etiology of mandibular ameloblastoma and highlights potential disease risk factors for screening and prevention, especially for Asian patients. Because of the limited sample size and incomplete habitual, dietary, and occupational data, a causal link between tobacco usage and ameloblastoma still requires further investigations.
Collapse
Affiliation(s)
- P Guan
- 1 Integrated Biostatistics and Bioinformatics Programme, Duke-NUS Medical School, Singapore.,2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,3 Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - S F Wong
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - J Q Lim
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,4 Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - C C Y Ng
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - P L Soong
- 5 Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore
| | - C Q X Sim
- 5 Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore
| | - C K Ong
- 4 Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - V Rajasegaran
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - S S Myint
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - J Y Lee
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - H K Tan
- 6 Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - N G Iyer
- 6 Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - K C Soo
- 6 Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - B T Teh
- 2 Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,7 Cancer Science Institute of Singapore, National University of Singapore, Singapore.,8 Institute of Molecular and Cell Biology, Singapore.,9 Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore.,10 SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| | - A B G Tay
- 5 Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore
| |
Collapse
|
9
|
Dutra SN, Pires FR, Armada L, Azevedo RS. Immunoexpression of Wnt/β-catenin signaling pathway proteins in ameloblastoma and calcifying cystic odontogenic tumor. J Clin Exp Dent 2017; 9:e136-e140. [PMID: 28149478 PMCID: PMC5268103 DOI: 10.4317/jced.53100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022] Open
Abstract
Background Wnt/β-catenin signaling pathway is essential for the beginning of odontogenesis and may be involved in the development and progression of some odontogenic tumors. Thus, the aim of this study was to comparatively evaluate the immunohistochemical expression of Wnt/β-catenin signaling pathway proteins in a series of AME and CCOT. Material and Methods Immunohistochemical reactions were performed using antibodies against Wnt1, Wnt5a and β-catenin in 17 cases of solid AME and 6 cases of CCOT. Results In the AME group, Wnt1 and Wnt5a were identified in the epithelium in most of the cases, and β-catenin was mainly identified in the cytoplasm of the tumoral cells. In the CCOT group, Wnt1 and Wnt5a were identified in the epithelium and in the ghost cells in almost all the cases, and β-catenin was mainly identified in the cytoplasm and in the nuclei of the tumoral cells. Conclusions These results contribute to support the importance of Wnt/β-catenin signaling pathway proteins in AME and CCOT tumorigenesis. The abnormal expression of cytoplasmic and/or nuclear β-catenin appears to contribute to the development of both AME and CCOT. In addition, it is possible that Wnt1 and Wnt5a expression in ghost cells can contribute to its histogenesis in CCOT. Key words:Ameloblastoma, β-catenin, calcifying cystic odontogenic tumor, immunohistochemistry, Wnt.
Collapse
Affiliation(s)
- Sabrina-Nogueira Dutra
- PhD, Oral Pathology, Piracicaba Dental School, State University of Campinas, Piracicaba/SP, Brazil
| | - Fábio-Ramôa Pires
- Professor, Oral Pathology, School of Dentistry, State University of Rio de Janeiro, Brazil; Professor, Post-graduate program in Dentistry, Estácio de Sá University, Rio de Janeiro/RJ, Brazil
| | - Luciana Armada
- Professor, Post-graduate program in Dentistry, Estácio de Sá University, Rio de Janeiro/RJ, Brazil
| | - Rebeca-Souza Azevedo
- Professor, Patologia Oral, Faculdade de Odontologia, Universidade Federal Fluminense, Nova Friburgo, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
10
|
Abstract
In continuation with the previous review on “β-catenin in health”, in this review we discuss the role of β-catenin in the pathogenesis of common oral lesions in the oral and maxillofacial region- oral potentially malignant disorders, their progression to oral squamous cell carcinoma, salivary gland tumors and odontogenic tumours. This review is based on a pubmed search of all the lesions included in the review.
Collapse
Affiliation(s)
- Sharada Prakash
- Department of Oral and Maxillofacial Pathology, AECS Maaruti College of Dental Sciences and Research Center, Bengaluru, Karnataka, India
| | - Uma Swaminathan
- Department of Oral and Maxillofacial Pathology, AECS Maaruti College of Dental Sciences and Research Center, Bengaluru, Karnataka, India
| | - B R Nagamalini
- Department of Oral and Maxillofacial Pathology, AECS Maaruti College of Dental Sciences and Research Center, Bengaluru, Karnataka, India
| | - Ashwini Balkuntla Krishnamurthy
- Department of Oral and Maxillofacial Pathology, AECS Maaruti College of Dental Sciences and Research Center, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Abstract
Several molecular pathways have been shown to play critical roles in the pathogenesis of odontogenic tumors. These neoplasms arise from the epithelial or mesenchymal cells of the dental apparatus in the jaw or oral mucosa. Next generation genomic sequencing has identified gene mutations or single nucleotide polymorphisms associated with many of these tumors. In this review, we focus on two of the most common odontogenic tumor subtypes: ameloblastoma and keratocystic odontogenic tumors. We highlight gene expression and protein immunohistological findings and known genetic alterations in the hedgehog, BRAF/Ras/MAPK, epidermal growth factor receptor, Wnt and Akt signaling pathways relevant to these tumors. These various pathways are explored to potentially target odontogenic tumors cells and prevent growth and recurrence of disease. Through an understanding of these signaling pathways and their crosstalk, molecular diagnostics may emerge as well as the ability to exploit identified molecular differences to develop novel molecular therapeutics for the treatment of odontogenic tumors.
Collapse
|
12
|
Aurrekoetxea M, Irastorza I, García-Gallastegui P, Jiménez-Rojo L, Nakamura T, Yamada Y, Ibarretxe G, Unda FJ. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis. Front Cell Dev Biol 2016; 4:25. [PMID: 27066482 PMCID: PMC4811915 DOI: 10.3389/fcell.2016.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. RESULTS Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. CONCLUSIONS We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Lucia Jiménez-Rojo
- Center of Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Graduate School of Dentistry, Tohoku University Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Fernando J Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
13
|
Li N, Liu B, Sui C, Jiang Y. Analysis of APC mutation in human ameloblastoma and clinical significance. SPRINGERPLUS 2016; 5:314. [PMID: 27065015 PMCID: PMC4786515 DOI: 10.1186/s40064-016-1904-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.
Collapse
Affiliation(s)
- Ning Li
- Department of Tumor Biotherapy and Cancer Research, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning Province China.,The 202nd Hospital of PLA, Shenyang, 110003 Liaoning Province China
| | - Bing Liu
- The 202nd Hospital of PLA, Shenyang, 110003 Liaoning Province China
| | - Chengguang Sui
- Department of Tumor Biotherapy and Cancer Research, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning Province China
| | - Youhong Jiang
- Department of Tumor Biotherapy and Cancer Research, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning Province China
| |
Collapse
|
14
|
Martínez Martínez M, Romero CS, Piña AR, Palma Guzmán JM, de Almeida OP. Pigmented ameloblastic fibro-odontoma: clinical, histological, and immunohistochemical profile. Int J Surg Pathol 2014; 23:52-60. [PMID: 25339415 DOI: 10.1177/1066896914553663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ameloblastic fibro-odontoma (AFO) is a slow-growing, expansive, benign odontogenic tumor, composed of ameloblastic epithelium embedded in an ectomesenchymal stroma resembling dental papilla, containing hard dental tissue in variable degrees of maturation, including enamel, dentin, and sometimes cementum. AFO typically affects the posterior mandible, causing bony expansion. We report a case of pigmented AFO in a 5-year-old boy, comprising clinical and histological features illustrated by immunohistochemistry using a large panel of antibodies, polarized light microscopy and scanning electron microscopy.
Collapse
|
15
|
Siar CH, Ishak I, Ng KH. Podoplanin, E-cadherin, β-catenin, and CD44v6 in recurrent ameloblastoma: their distribution patterns and relevance. J Oral Pathol Med 2014; 44:51-8. [DOI: 10.1111/jop.12203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Chong Huat Siar
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - Ismadi Ishak
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - Kok Han Ng
- Formerly; Unit of Stomatology; Cancer Research Centre; Institute for Medical Research; Kuala Lumpur Malaysia
| |
Collapse
|
16
|
Yamazaki M, Maruyama S, Abé T, Babkair H, Fujita H, Takagi R, Koyama JI, Hayashi T, Cheng J, Saku T. Hybrid ameloblastoma and adenomatoid odontogenic tumor: report of a case and review of hybrid variations in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:e12-8. [DOI: 10.1016/j.oooo.2013.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
17
|
Lei Y, Jaradat JM, Owosho A, Adebiyi KE, Lybrand KS, Neville BW, Müller S, Bilodeau EA. Evaluation of SOX2 as a potential marker for ameloblastic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117:608-616.e1. [DOI: 10.1016/j.oooo.2014.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/05/2014] [Accepted: 01/09/2014] [Indexed: 12/20/2022]
|
18
|
Pathogenesis and nomenclature of odontogenic carcinomas: revisited. JOURNAL OF ONCOLOGY 2014; 2014:197425. [PMID: 24799899 PMCID: PMC3985316 DOI: 10.1155/2014/197425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/09/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022]
Abstract
Odontogenic carcinoma is rare group of malignant epithelial odontogenic neoplasms with characteristic clinical behavior and histological features, which requires an aggressive surgical approach. The pathogenesis of this rare group remains still controversial and there have been many varied opinions over the classification of this rare group of lesions. As there have not been many reviews on odontogenic carcinoma, the existing knowledge is mostly derived from the published case reports. This review is discussing the pathogenetic mechanisms and is updating the knowledge on nomenclature system of less explored odontogenic carcinomas. This review might throw light on the pathogenesis and nomenclature system of odontogenic carcinoma and this knowledge may be applied therapeutically.
Collapse
|
19
|
E. Horvai A, C. Jordan R. Fibro-osseous lesions of the craniofacial bones: β-catenin immunohistochemical analysis and CTNNB1 and APC mutation analysis. Head Neck Pathol 2014; 8:291-7. [PMID: 24664543 PMCID: PMC4126923 DOI: 10.1007/s12105-014-0535-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 01/26/2023]
Abstract
The canonical Wnt/β-catenin pathway is involved in the formation of craniofacial skeleton and oral tissues. Aberrant nuclear localization of β-catenin protein has been described in several human diseases including a subset of odontogenic tumors thereby suggesting an important role in tumor development. Fibro-osseous lesions of the craniofacial skeleton comprise several neoplastic, and reactive mesenchymal proliferations in which β-catenin status is unknown. To study this, we immunostained 171 fibro-osseous lesions for β-catenin protein and, for lesions with nuclear positivity, sequenced exon 3 of the CTNNB1 gene and exon 15 of the APC gene. Nuclear β-catenin immunostaining was detected in 34 (20 %) tumors with no correlation between nuclear positivity and either age, gender, or tissue decalcification status (p = 0.2, 0.17, 0.12, respectively). Absent nuclear β-catenin in fibrous dysplasia was the only diagnostically significant finding (p = 0.0034). A single point mutation at Asp56 of CTNNB1 was identified in one case of ossifying fibroma. A second ossifying fibroma and one desmoplastic fibroma demonstrated point mutations (Glu1317 and Glu1536, respectively [corrected] ) in the APC gene. These findings show that apart from fibrous dysplasia where nuclear β-catenin is rare, nuclear β-catenin staining has limited utility in discriminating among the craniofacial fibro-osseous lesions. The molecular mechanisms underlying nuclear β-catenin accumulation in the positive tumors is unlikely to be mediated by CTNNB1 exon 3 or APC exon 15 mutations in most cases.
Collapse
Affiliation(s)
- Andrew E. Horvai
- Department of Pathology, University of California, San Francisco, 1600 Divisadero Street, B220, San Francisco, CA 94115 USA
| | - Richard C. Jordan
- Department of Pathology, University of California, San Francisco, 1600 Divisadero Street, B220, San Francisco, CA 94115 USA ,Department of Orofacial Sciences, University of California, San Francisco, 1701 Divisadero Street, Room 280, Box 1790, San Francisco, CA 94143 USA
| |
Collapse
|
20
|
Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 2014; 45:487-96. [DOI: 10.1007/s10735-014-9572-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 01/07/2023]
|
21
|
González-González R, Molina-Frechero N, Damian-Matsumura P, Bologna-Molina R. Molecular markers of cell adhesion in ameloblastomas. An update. Med Oral Patol Oral Cir Bucal 2014; 19:e8-e14. [PMID: 23986011 PMCID: PMC3909437 DOI: 10.4317/medoral.19071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/19/2013] [Indexed: 02/07/2023] Open
Abstract
Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets.
Collapse
Affiliation(s)
- Rogelio González-González
- Research Department, School of Dentistry, Universidad Juárez del Estado de Durango (UJED), Predio Canoas S n, 34000 Durango, México,
| | | | | | | |
Collapse
|
22
|
Harnet JC, Pedeutour F, Raybaud H, Ambrosetti D, Fabas T, Lombardi T. Immunohistological features in adenomatoid odontogenic tumor: review of the literature and first expression and mutational analysis of β-catenin in this unusual lesion of the jaws. J Oral Maxillofac Surg 2012; 71:706-13. [PMID: 23265580 DOI: 10.1016/j.joms.2012.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate for the first time the immunohistochemical and mutational status of β-catenin in a mandibular case of adenomatoid odontogenic tumor (AOT) and to review the immunohistochemical expression data of various markers (cytokeratins, metalloproteinases, etc) in such a lesion. MATERIALS AND METHODS A case of follicular-type AOT in a young male patient was analyzed in regard to the immunohistochemical expression of β-catenin and mutations of the β-catenin gene (CTNNB1). Its expression is altered in some odontogenic tumors. RESULTS We found a strong cytoplasmic expression of β-catenin, but no molecular anomaly within the exon 3 of CTNNB1. β-catenin is considered to play a role in cell differentiation processes. CONCLUSION Our results were consistent with previous findings in ameloblastoma and malignant odontogenic tumors. However, β-catenin alterations had not been explored in AOT so far. Further studies are necessary to understand the specific regulation of β-catenin in the AOT pathogenesis.
Collapse
|
23
|
Aurrekoetxea M, Lopez J, García P, Ibarretxe G, Unda F. Enhanced Wnt/β-catenin signalling during tooth morphogenesis impedes cell differentiation and leads to alterations in the structure and mineralisation of the adult tooth. Biol Cell 2012; 104:603-17. [PMID: 22671936 DOI: 10.1111/boc.201100075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/15/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION Previous studies have indicated that over-activation of the wingless interaction site (Wnt)/β-catenin signalling pathway has important implications for tooth development, at the level of cell differentiation and morphology, as well as for the production of supernumerary teeth. Here, we provide evidence for a crucial role of this signalling pathway during the stage of tooth morphogenesis. We have developed an in vitro model consisting of 14.5-day-old mouse embryo first molars, in which the Wnt pathway is overactivated by the glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3'-oxime (BIO; 20 µM). RESULTS We found that over-activation of the Wnt/β-catenin pathway delayed the differentiation and growth of the inner dental epithelium. In addition, in contrast to controls in which Nestin protein expression was restricted to differentiated odontoblasts, in BIO-treated molars, Nestin expression spread through sub-odontoblastic cellular layers. This alteration appears to be related to: (i) the over-expression of Bmp4 in the same region, (ii) the delay in odontoblast precursor cell differentiation and (iii) increased proliferation of mesenchymal cells. Furthermore, treatments longer than 6 days induced the malformation of typical dental structures and led to a total lack of cell differentiation. Finally, over-activation of the Wnt route during odontogenesis resulted in adult teeth which presented altered size, morphology and mineralisation. CONCLUSIONS Our results indicate that Wnt/β-catenin over-activation during tooth morphogenesis is sufficient to cause dramatic alterations in the adult tooth, by delaying cellular differentiation and stimulating proliferation of the dental mesenchyme of developing teeth.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa 48940, Vizcaya, Spain
| | | | | | | | | |
Collapse
|
24
|
Sathi GA, Tamamura R, Tsujigiwa H, Katase N, Lefeuvre M, Siar CH, Matsuda H, Nagatsuka H. Analysis of immunoexpression of common cancer stem cell markers in ameloblastoma. Exp Ther Med 2011; 3:397-402. [PMID: 22969902 DOI: 10.3892/etm.2011.437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/02/2011] [Indexed: 01/27/2023] Open
Abstract
Recent studies have established that, in benign tumors, a large number of cancer stem cells are present, which have great implications in tumor development. However, in ameloblastoma, a highly aggressive, locally invasive tumor with a high recurrence rate, whether or not cancer stem-like cells are present remains undetermined. Therefore, in this study we analyzed the protein expression of three candidate stem cell markers in ameloblastoma. Immunohistochemical staining for cancer stem cell (CSC) markers (CD133, CD44 and ABCG2) and for the proliferation marker Ki-67 was performed using 23 ameloblastoma cases. In all 23 samples, CD133, CD44 and ABCG2 were expressed. Nine (39.13%) cases showed high expression and 14 cases (60.87%) showed low expression for CD133. Twelve of the 23 cases (52.17%) showed high expression and 11 cases (47.83%) showed low expression for both CD44 and ABCG2, respectively. Ki-67 was mainly expressed in peripheral ameloblast-like cells, suggesting that these cells have a higher degree of differentiation and, therefore, are less likely to contain cancer stem-like cells. On the other hand, cells positive for CSC markers situated at the close proximity to peripheral cells were devoid of Ki-67 and may have the potential to be cancer stem-like cells. After analyzing the correlation between expression of three CSC markers with clinicopathological factors and Ki-67 expression, only CD44 expression was correlated with tumor recurrence (P=0.0391). In conclusion, this study showed various expression patterns of different types of cancer stem cell markers and the presence of candidate CSC-like cells in ameloblastoma, which are possibly involved in cell proliferation, tumor progression and recurrence.
Collapse
Affiliation(s)
- Gulsan Ara Sathi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, Ng KH, Kawakami T. Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma. J Oral Pathol Med 2011; 41:332-9. [PMID: 22077561 DOI: 10.1111/j.1600-0714.2011.01104.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chong Huat Siar
- Department of Oral Pathology, Oral Medicine & Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pérez-Sayáns M, Suárez-Peñaranda JM, Herranz-Carnero M, Gayoso-Diz P, Barros-Angueira F, Gándara-Rey JM, García-García A. The role of the adenomatous polyposis coli (APC) in oral squamous cell carcinoma. Oral Oncol 2011; 48:56-60. [PMID: 21937258 DOI: 10.1016/j.oraloncology.2011.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
The main cause of death in oral squamous cell carcinomas (OSCC) is metastasis. Intercellular adhesion is mediated by a family of glycoproteins called cadherins and other molecules like catenins and APC (adenomatous polyposis coli) among other. The WNT (wingless-type) gene family is a group of genes, key signaling pathway for embryonic development and oncogenesis. The goal of this paper is to describe the role of the APC gene, and its derivatives, in the carcinogenicity pathway of WNT-1, identifying its role as a tumor suppressor gene in OSCC, while describing the genetic (loss of heterozygosity and mutations) and epigenetic alterations that modulate its expression and evaluate its relationship with the clinicopathological parameters of this type of tumors. As for APC, its activity as a tumor suppressor gene appears muted on a relatively frequent basis in these tumors, either by LOH, mutations or epigenetic control mechanisms, thus resulting in a low degree of agreement between the results of different studies.
Collapse
Affiliation(s)
- Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Entrerríos s/n, Santiago de Compostela C.P. 15782, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu F, Millar S. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 2010; 89:318-30. [PMID: 20200414 PMCID: PMC3140915 DOI: 10.1177/0022034510363373] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway is one of several key conserved intercellular signaling pathways in animals, and plays fundamental roles in the proliferation, regeneration, differentiation, and function of many cell and tissue types. This pathway is activated in a dynamic manner during the morphogenesis of oral organs, including teeth, taste papillae, and taste buds, and is essential for these processes to occur normally. Conversely, forced activation of Wnt/beta-catenin signaling promotes the formation of ectopic teeth and taste papillae. In this review, we discuss our current understanding of the roles of Wnt/beta-catenin signaling in oral tissue development and in related human diseases, and the potential of manipulating this pathway for therapeutic purposes.
Collapse
Affiliation(s)
- F. Liu
- Institute for Regenerative Medicine at Scott & White Hospital, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - S.E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Kumamoto H. Molecular alterations in the development and progression of odontogenic tumors. ACTA ACUST UNITED AC 2010. [DOI: 10.3353/omp.14.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|