1
|
Skubal M, Larney BM, Phung NB, Desmaras JC, Dozic AV, Volpe A, Ogirala A, Machado CL, Djibankov J, Ponomarev V, Grimm J. Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies. Theranostics 2025; 15:766-783. [PMID: 39776800 PMCID: PMC11700857 DOI: 10.7150/thno.95334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment. Methods: We investigated both, tumor neovascularization and therapy, via co-culture of human derived endothelial cells and adjacently localized metastatic renal cell carcinoma spheroids on a commercially available microfluidic chip system. Metastatic renal cell carcinoma spheroids adjacent to primary vessels model tumor, and induce vessels to sprout neovasculature towards the tumor. We monitored real time changes in vessel formation, probed the interactions of tumor and endothelial cells, and evaluated the role of important effectors in tumor vasculature. In addition to wild type endothelial cells, we evaluated endothelial cells that overexpress Prostate Specific Membrane Antigen (PSMA), that has emerged as a marker of tumor associated neovasculature. We characterized the process of neovascularization on the microfluidic chip stimulated by enhanced culture medium and the investigated metastatic renal cell carcinomas, and assessed endothelial cells responses to vascular targeted therapy with bevacizumab via confocal microscopy imaging. To emphasize the potential clinical relevance of metastatic renal cell carcinomas on chip, we compared therapy with bevacizumab on chip with an in vivo model of the same tumor. Results: Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprouted towards the tumor and mimicked a vascular network. Bevacizumab, an antiangiogenic agent, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Conclusion: Observations in the vascularized tumor on chip permitted direct and conclusive quantification of vascular targeted therapies in weeks as opposed to months in a comparable animal model, and bridged the gap between in vitro and in vivo models.
Collapse
Affiliation(s)
- Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Juan Carlos Desmaras
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abdul Vehab Dozic
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessia Volpe
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila Longo Machado
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jakob Djibankov
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Ponomarev
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Skubal M, Larney BM, Phung NB, Desmaras JC, Dozic AV, Volpe A, Ogirala A, Machado CL, Djibankov J, Ponomarev V, Grimm J. Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552309. [PMID: 37609216 PMCID: PMC10441301 DOI: 10.1101/2023.08.07.552309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.
Collapse
|
3
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
4
|
Ioannidou E, Moschetta M, Shah S, Parker JS, Ozturk MA, Pappas-Gogos G, Sheriff M, Rassy E, Boussios S. Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets. Int J Mol Sci 2021; 22:ijms22189926. [PMID: 34576107 PMCID: PMC8472415 DOI: 10.3390/ijms22189926] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most common cancer in men and the second leading cause of cancer-related death worldwide. Many therapeutic advances over the last two decades have led to an improvement in the survival of patients with metastatic PC, yet the majority of these patients still succumb to their disease. Antiagiogenic therapies have shown substantial benefits for many types of cancer but only a marginal benefit for PC. Ongoing clinical trials investigate antiangiogenic monotherapies or combination therapies. Despite the important role of angiogenesis in PC, clinical trials in refractory castration-resistant PC (CRPC) have demonstrated increased toxicity with no clinical benefit. A better understanding of the mechanism of angiogenesis may help to understand the failure of trials, possibly leading to the development of new targeted anti-angiogenic therapies in PC. These could include the identification of specific subsets of patients who might benefit from these therapeutic strategies. This paper provides a comprehensive review of the pathways involved in the angiogenesis, the chemotherapeutic agents with antiangiogenic activity, the available studies on anti-angiogenic agents and the potential mechanisms of resistance.
Collapse
Affiliation(s)
- Evangelia Ioannidou
- Department of Paediatrics and Child Health, Chelsea and Westminster Hospital, 369 Fulham Rd., London SW10 9NH, UK;
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21, CH-1011 Lausanne, Switzerland;
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Jack Steven Parker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Mehmet Akif Ozturk
- Department of Medical Oncology, Sisli Memorial Hospital, Kaptan Paşa Mah. Piyale Paşa Bulv., Okmeydanı Cd. 4, Istanbul 34384, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki, Thermi, 57001 Thessaloniki, Greece
- Correspondence: or
| |
Collapse
|
5
|
Itashiki Y, Harada K, Takenawa T, Ferdous T, Ueyama Y, Mishima K. Antitumor effects of bevacizumab in combination with fluoropyrimidine drugs on human oral squamous cell carcinoma. Oncol Lett 2021; 22:730. [PMID: 34429770 PMCID: PMC8371954 DOI: 10.3892/ol.2021.12991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) serves an important role in new blood vessel formation or angiogenesis, which is a critical event in tumor growth and metastasis. Bevacizumab is a humanized monoclonal antibody against VEGF-A, whereas S-1 is a fluoropyrimidine antineoplastic agent that induces apoptosis in various types of cancer cells. The present study evaluated the antitumor effects of bevacizumab in combination with 5-fluorouracil (5-FU) or S-1 against oral squamous cell carcinoma (OSCC) in vitro and in vivo. Two human OSCC cell lines were used, namely the high VEGF-A-expressing HSC-2 cells and the low VEGF-A-expressing SAS cells. MTT assay was used to evaluate the effect of bevacizumab and/or 5-FU against HSC-2 and SAS cell proliferation. Additionally, the antitumor effect of bevacizumab was evaluated alone and in combination with S-1 against HSC-2 tumors in nude mice. S-1 (6.9 mg/kg/day) was administered orally every day for 3 weeks, and bevacizumab (5 ml/kg/day) was injected intraperitoneally twice per week for 3 weeks. Apoptotic cells in mouse tumors were detected using the TUNEL method, and cell proliferation and microvessel density (MVD) were determined by immunohistochemical staining of Ki-67 and CD31, respectively. Bevacizumab alone did not inhibit OSCC cell proliferation in vitro, and did not exhibit any synergistic inhibitory effect in combination with 5-FU in vitro. However, combined bevacizumab and S-1 therapy exerted synergistic and significant antitumor effects in vivo on HSC-2 tumor xenografts, and induced apoptosis in tumor cells. Furthermore, this combination therapy led to decreased MVD and cell proliferative abilities, as well as increased apoptosis in residual tumors. The present findings suggested that the bevacizumab plus S-1 combination therapy may exert antitumor effects in high VEGF-A-expressing OSCC cells.
Collapse
Affiliation(s)
- Yasutaka Itashiki
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Dentistry and Oral Surgery, National Hospital Organization Kanmon Medical Center, Shimonoseki, Yamaguchi 752-8510, Japan
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Takanori Takenawa
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
6
|
Wang J, Jiang Q, Faleti OD, Tsang CM, Zhao M, Wu G, Tsao SW, Fu M, Chen Y, Ding T, Chong T, Long Y, Yang X, Zhang Y, Cai Y, Li H, Peng M, Lyu X, Li X. Exosomal Delivery of AntagomiRs Targeting Viral and Cellular MicroRNAs Synergistically Inhibits Cancer Angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:153-165. [PMID: 32927364 PMCID: PMC7494942 DOI: 10.1016/j.omtn.2020.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer characterized by a high degree of recurrence, angiogenesis, and metastasis. The importance of alternative pro-angiogenesis pathways including viral factors has emerged after decades of directly targeting various signaling components. Using NPC as a model, we identified an essential oncogenic pathway underlying angiogenesis regulation that involves the inhibition of a tumor suppressor, Spry3, and its downstream targets by EBV-miR-BART10-5p (BART10-5p) and hsa-miR-18a (miR-18a). Overexpression of EBV-miR-BART10-5p and hsa-miR-18a strongly promotes angiogenesis in vitro and in vivo by regulating the expression of VEGF and HIF1-α in a Spry3-dependent manner. In vitro or in vivo treatment with iRGD-tagged exosomes containing antagomiR-BART10-5p and antagomiR-18a preferentially suppressed the angiogenesis and growth of NPC. Our findings first highlight the role of EBV-miR-BART10-5p and oncogenic hsa-miR-18a in NPC angiogenesis and also shed new insights into the clinical intervention and therapeutic strategies for nasopharyngeal carcinoma and other virus-associated tumors.
Collapse
Affiliation(s)
- Jianguo Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qiang Jiang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Oluwasijibomi Damola Faleti
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chi-Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, China
| | - Gongfa Wu
- Department of Pathology, Zengcheng District People's Hospital of Guangzhou City, Guangzhou, China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Minyi Fu
- Otolaryngology-Head and Neck Surgery Department, Zhongshan City People's Hospital, Zhongshan, China
| | - Yuxiang Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yunxi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hanzhao Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoming Lyu
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
7
|
Wei GG, Gao L, Tang ZY, Lin P, Liang LB, Zeng JJ, Chen G, Zhang LC. Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression. Pathol Res Pract 2019; 215:152378. [PMID: 30871913 DOI: 10.1016/j.prp.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/07/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
The severe damage to health and social burden caused by head and neck squamous cell carcinoma (HNSCC) generated an urgent need to develop novel anti-cancer therapy. Currently, drug repositioning has risen in responses to the proper time as an efficient approach to invention of new anti-cancer therapies. In the present study, we aimed to screen candidate drugs for HNSCC by integrating HNSCC-related pathways from differentially expressed genes (DEGs) and drug-affected pathways from connectivity map (CMAP). We also endeavored to unveil the molecular mechanism of HNSCC through creating drug-target network and protein-to-protein (PPI) network of component DEGs in key overlapping pathways. As a result, a total of 401 DEGs were obtained from TCGA and GTEx mRNA-seq data. Taking the intersection part of 27 HNSCC-related Kyoto Encyclopedia of Genes and Genomes pathways and 33 drug-affected pathways, we retained 22 candidate drugs corresponding to two key pathways (cell cycle and p53 signaling pathways) of the five overlapping pathways. Two of the hub genes (PCNA and CCND1) identified from the PPI network of component DEGs in cell cycle and p53 signaling pathways were defined as the critical targets of candidate drugs with increased protein expression in HNSCC tissues, which was reported by the human protein atlas (HPA) database and cBioPortal. Finally, we validated via molecular docking analysis that two drugs with unknown effects in HNSCC: MG-262 and bepridil might perturb the development of HNSCC through targeting PCNA. These candidate drugs possessed broad application prospect as medication for HNSCC.
Collapse
Affiliation(s)
- Gan-Guan Wei
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng-Yi Tang
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Bin Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Long-Cheng Zhang
- Department of Otolaryngology Head and Neck Surgery, NO.303 Hospital of PLA, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Yoshida H, Yoshimura H, Matsuda S, Ryoke T, Kiyoshima T, Kobayashi M, Sano K. Effects of peritumoral bevacizumab injection against oral squamous cell carcinoma in a nude mouse xenograft model: A preliminary study. Oncol Lett 2018; 15:8627-8634. [PMID: 29805597 DOI: 10.3892/ol.2018.8399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis serves a crucial role in tumor growth. Vascular endothelial growth factor (VEGF) is a potent regulator of tumor angiogenesis and is highly expressed in oral squamous cell carcinoma (OSCC). Bevacizumab, which binds to VEGF-A, inhibits the biological activity of VEGF and is clinically administered by intravenous injection. As intravenous chemotherapy intensifies the side effects experienced by OSCC patients, an alternative treatment option is desirable, particularly for older patients with OSCC who present with systemic disease complications. Generally, local injections of antitumor agents enhance tumoricidal activity and decrease side effects. However, the antitumor effects of peritumoral bevacizumab injections in OSCC are not fully understood. Therefore, the present study examined the effects of peritumoral bevacizumab injections in an experimental nude mouse model of OSCC through immunohistochemical staining for cluster of differentiation (CD)31 and α-smooth muscle actin (α-SMA) and apoptosis assays. It was identified that peritumoral injections of bevacizumab significantly inhibited tumor growth in OSCC xenografts compared with peritumoral saline injections or no treatment (controls), and it was also revealed that treatment with bevacizumab significantly reduced CD31- and α-SMA-positive microvessel density (P<0.01) and increased level of tumor cell apoptosis (P<0.01) compared with the controls. In conclusion, these results collectively support the experimental basis for the clinical development of peritumoral bevacizumab injections for the treatment of OSCC.
Collapse
Affiliation(s)
- Hisato Yoshida
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinpei Matsuda
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Ryoke
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Unit of Pathological Sciences, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuo Sano
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
9
|
Zakharia Y, Bhattacharya A, Rustum YM. Selenium targets resistance biomarkers enhancing efficacy while reducing toxicity of anti-cancer drugs: preclinical and clinical development. Oncotarget 2018; 9:10765-10783. [PMID: 29535842 PMCID: PMC5828194 DOI: 10.18632/oncotarget.24297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Selenium (Se)-containing molecules exert antioxidant properties and modulate targets associated with tumor growth, metastasis, angiogenesis, and drug resistance. Prevention clinical trials with low-dose supplementation of different types of Se molecules have yielded conflicting results. Utilizing several xenograft models, we earlier reported that the enhanced antitumor activity of various chemotherapeutic agents by selenomethione and Se-methylselenocysteine in several human tumor xenografts is highly dose- and schedule-dependent. Further, Se pretreament offered selective protection of normal tissues from drug-induced toxicity, thereby allowing higher dosing than maximum tolerated doses. These enhanced therapeutic effects were associated with inhibition of hypoxia-inducible factor 1- and 2-alpha (HIF1α, HIF2α) protein, nuclear factor (erythyroid-derived 2)-like 2 (Nrf2) and pair-related homeobox-1 (Prx1) transcription factors, downregulation of oncogenic- and upregulation of tumor suppressor miRNAs. This review provides: 1) a brief update of clinical prevention trials with Se; 2) advances in the use of specific types, doses, and schedules of Se that selectively modulate antitumor activity and toxicity of anti-cancer drugs; 3) identification of targets selectively modulated by Se; 4) plasma and tumor tissue Se levels achieved after oral administration of Se in xenograft models and cancer patients; 5) development of a phase 1 clinical trial with escalating doses of orally administered selenomethionine in sequential combination with axitinib to patients with advanced clear cell renal cell carcinoma; and 6) clinical prospects for future therapeutic use of Se in combination with anticancer drugs.
Collapse
Affiliation(s)
- Yousef Zakharia
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Arup Bhattacharya
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| | - Youcef M. Rustum
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| |
Collapse
|
10
|
Cui Y, Liu H, Liang S, Zhang C, Cheng W, Hai W, Yin B, Wang D. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG. Oncotarget 2017; 7:27243-54. [PMID: 27029065 PMCID: PMC5053646 DOI: 10.18632/oncotarget.8402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Experimental design and results Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). Conclusions 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation.
Collapse
Affiliation(s)
- Yanfen Cui
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Caiyuan Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wangxi Hai
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.,Med-X Ruijin Hospital Micro PET/CT Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
11
|
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: From resistance to vascular targeting agents to complete tumor ablation. Tumour Biol 2017; 39:1010428317691001. [DOI: 10.1177/1010428317691001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current vascular targeting strategies pursue two main goals: anti-angiogenesis agents aim to halt sprouting and the formation of new blood vessels, while vascular disrupting agents along with coaguligands seek to compromise blood circulation in the vessels. The ultimate goal of such therapies is to deprive tumor cells out of oxygen and nutrients long enough to succumb cancer cells to death. Most of vascular targeting agents presented promising therapeutic potential, but the final goal which is cure is rarely achieved. Nevertheless, in both preclinical and clinical settings, tumors tend to grow back, featuring a highly invasive, metastatic, and extremely resistant form. This review highlights the critical significance of tumor rim cells as the main factor, determining therapy success with vascular targeting agents. We present an overview of different single and combination treatments with vascular targeting agents that enable efficient targeting of tumor rim cells and long-lasting tumor cure. Understanding the nature of tumor rim cells, how they establish, how they manage to survive of vascular targeting agents, and how they contribute in tumor refractoriness, may open new avenues to the development of beneficial strategies, capable to eliminate residual rim cells, and enable tumor ablation once and forever.
Collapse
Affiliation(s)
- Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Cui Y, Zhang C, Luo R, Liu H, Zhang Z, Xu T, Zhang Y, Wang D. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11:5671-5682. [PMID: 27895477 PMCID: PMC5117895 DOI: 10.2147/ijn.s115357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation.
Collapse
Affiliation(s)
- Yanfen Cui
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Caiyuan Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ran Luo
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhongyang Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tianyong Xu
- MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People's Republic of China
| | - Yong Zhang
- MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People's Republic of China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
13
|
Argiris A, Bauman JE, Ohr J, Gooding WE, Heron DE, Duvvuri U, Kubicek GJ, Posluszny DM, Vassilakopoulou M, Kim S, Grandis JR, Johnson JT, Gibson MK, Clump DA, Flaherty JT, Chiosea SI, Branstetter B, Ferris RL. Phase II randomized trial of radiation therapy, cetuximab, and pemetrexed with or without bevacizumab in patients with locally advanced head and neck cancer. Ann Oncol 2016; 27:1594-600. [PMID: 27177865 DOI: 10.1093/annonc/mdw204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/04/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND We previously reported the safety of concurrent cetuximab, an antibody against epidermal growth factor receptor (EGFR), pemetrexed, and radiation therapy (RT) in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). In this non-comparative phase II randomized trial, we evaluated this non-platinum combination with or without bevacizumab, an inhibitor of vascular endothelial growth factor (VEGF). PATIENTS AND METHODS Patients with previously untreated stage III-IVB SCCHN were randomized to receive: conventionally fractionated radiation (70 Gy), concurrent cetuximab, and concurrent pemetrexed (arm A); or the identical regimen plus concurrent bevacizumab followed by bevacizumab maintenance for 24 weeks (arm B). The primary end point was 2-year progression-free survival (PFS), with each arm compared with historical control. Exploratory analyses included the relationship of established prognostic factors to PFS and quality of life (QoL). RESULTS Seventy-eight patients were randomized: 66 oropharynx (42 HPV-positive, 15 HPV-negative, 9 unknown) and 12 larynx; 38 (49%) had heavy tobacco exposure. Two-year PFS was 79% [90% confidence interval (CI) 0.69-0.92; P < 0.0001] for arm A and 75% (90% CI 0.64-0.88; P < 0.0001) for arm B, both higher than historical control. No differences in PFS were observed for stage, tobacco history, HPV status, or type of center (community versus academic). A significantly increased rate of hemorrhage occurred in arm B. SCCHN-specific QoL declined acutely, with marked improvement but residual symptom burden 1 year post-treatment. CONCLUSIONS RT with a concurrent non-platinum regimen of cetuximab and pemetrexed is feasible in academic and community settings, demonstrating expected toxicities and promising efficacy. Adding bevacizumab increased toxicity without apparent improvement in efficacy, countering the hypothesis that dual EGFR-VEGF targeting would overcome radiation resistance, and enhance clinical benefit. Further development of cetuximab, pemetrexed, and RT will require additional prospective study in defined, high-risk populations where treatment intensification is justified.
Collapse
Affiliation(s)
- A Argiris
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio
| | - J E Bauman
- Division of Hematology/Oncology, Department of Medicine
| | - J Ohr
- Department of Medicine, Division of Hematology/Oncology
| | | | - D E Heron
- Department of Medicine, Division of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh
| | - U Duvvuri
- Division of Otolaryngology, Department of Medicine, University of Pittsburgh, Pittsburgh
| | - G J Kubicek
- Division of Radiation Oncology, Department of Medicine, Cooper University Healthcare, Camden
| | - D M Posluszny
- Division of Biobehavioral Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, USA
| | - M Vassilakopoulou
- Division of Hematology/Oncology, Department of Medicine, Hopital de la Pitie-Salpetriere, Paris, France
| | - S Kim
- Division of Otolaryngology, Department of Medicine, University of Pittsburgh, Pittsburgh
| | - J R Grandis
- Division of Otolaryngology, Department of Medicine, University of California, San Francisco
| | - J T Johnson
- Division of Otolaryngology, Department of Medicine, University of Pittsburgh, Pittsburgh
| | - M K Gibson
- Division of Hematology/Oncology, Department of Medicine, UH Case Medical Center, Cleveland
| | - D A Clump
- Department of Medicine, Division of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh
| | - J T Flaherty
- Division of Hematology/Oncology, Department of Medicine
| | - S I Chiosea
- Division of Pathology, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - B Branstetter
- Department of Medicine, Division of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh
| | - R L Ferris
- Division of Otolaryngology, Department of Medicine, University of Pittsburgh, Pittsburgh
| |
Collapse
|
14
|
Jing Z, Xu H, Chen X, Zhong Q, Huang J, Zhang Y, Guo W, Yang Z, Ding S, Chen P, Huang Z. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS One 2016; 11:e0152789. [PMID: 27078157 PMCID: PMC4831743 DOI: 10.1371/journal.pone.0152789] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.
Collapse
Affiliation(s)
- Zhibin Jing
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongbo Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Zhong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zheng Yang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Ding
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ping Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Huang Y, Zhao K, Hu Y, Zhou Y, Luo X, Li X, Wei L, Li Z, You Q, Guo Q, Lu N. Wogonoside inhibits angiogenesis in breast cancer via suppressing Wnt/β-catenin pathway. Mol Carcinog 2015; 55:1598-1612. [PMID: 26387984 DOI: 10.1002/mc.22412] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Wogonoside, a main flavonoid component derived from the root of Scutellaria baicalensis Georgi, has been reported to have anti-angiogenesis and anti-leukemia activities. However, whether it can inhibit tumor angiogenesis is unclear. In this study, we investigate the inhibitory effect of wogonoside on angiogenesis in breast cancer and its underlying mechanisms. ELISA assay shows that wogonoside (25, 50, and 100 µM) decreases the secretion of VEGF in MCF-7 cells by 30.0%, 35.4%, and 40.1%, respectively. We find it inhibits angiogenesis induced by the conditioned media from MCF-7 cells in vitro and in vivo by migration, tube formation, rat aortic ring, and chicken chorioallantoic membrane (CAM) assay. Meanwhile, wogonoside can inhibit the growth and angiogenesis of MCF-7 cells xenografts in nude mice. The reduction of tumor weight can be found both in wogonoside (80 mg/kg) and bevacizumab (20 mg/kg) treated group, and the tumor inhibition rate is 42.1% and 48.7%, respectively. In addition, mechanistic studies demonstrate that wogonoside suppresses the activation of Wnt/β-catenin pathway in MCF-7 cells. Wogonoside (100 µM) decreases the intracellular level of Wnt3a, increases the expression of GSK-3β, AXIN, and promotes the phosphorylation of β-catenin for proteasome degradation significantly. Furthermore, the nuclear accumulation of β-catenin and the DNA-binding activity of β-catenin/TCF/Lef complex are inhibited by 49.2% and 28.7%, respectively, when treated with 100 µM wogonoside. Taken together, our findings demonstrate that wogonoside is a potential inhibitor of tumor angiogenesis and can be developed as a therapeutic agent for breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yujie Huang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kai Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Hu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxin Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuwei Luo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaorui Li
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Libin Wei
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Na Lu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Chen IC, Lin CH, Jan IS, Cheng AL, Lu YS. Bevacizumab might potentiate the chemotherapeutic effect in breast cancer patients with leptomeningeal carcinomatosis. J Formos Med Assoc 2015; 115:243-8. [PMID: 25890495 DOI: 10.1016/j.jfma.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/PURPOSE Patients with leptomeningeal carcinomatosis (LC) from breast cancer is generally resistant to systemic chemotherapy. Bevacizumab may increase intratumor concentration of the chemotherapeutic agents through vascular normalization, although the overall clinical benefit of bevacizumab for metastatic breast cancer is under debate. METHODS Successful treatment of two breast cancer patients who developed LC after whole brain irradiation treatment for the brain metastases is reported here. Both patients have refractory disease to taxane and anthracycline, and both of them have disease progression under intrathecal methotrexate treatment for LC. RESULTS The two patients received systemic chemotherapy with bevacizumab (7.5 mg/kg infusion on Day 1), cisplatin (80 mg/m(2) infusion for 24 hours on Day 2), and etoposide (80 mg/m(2) infusion for 2 hours on Days 2-4) at 21-28 day intervals. Both patients achieved best response of negative cerebral spinal fluid cytology study and dramatic improvement of neurologic deficit after treatment. Their overall survival after development of LC was 8 months and 7.5 months respectively. CONCLUSION Bevacizumab plus etoposide and cisplatin might be a new option for breast cancer patients with LC. Further prospective study is warranted.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Shiow Jan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Gyanchandani R, Sano D, Ortega Alves MV, Klein JD, Knapick BA, Oh S, Myers JN, Kim S. Interleukin-8 as a modulator of response to bevacizumab in preclinical models of head and neck squamous cell carcinoma. Oral Oncol 2013; 49:761-70. [PMID: 23623402 DOI: 10.1016/j.oraloncology.2013.03.452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Bevacizumab, a monoclonal antibody to VEGF-A, is under active clinical evaluation in head and neck squamous cell carcinoma (HNSCC) and appears to be a promising therapy in at least a subset of patients. However, there are no reliable predictive biomarkers to identify those patients most likely to benefit. In this study, we assessed the efficacy of bevacizumab in HNSCC xenograft models to characterize escape mechanisms underlying intrinsic resistance and identify potential biomarkers of drug response. MATERIALS AND METHODS We evaluated the angiogenic profile of HNSCC cells from sensitive and resistant cell lines using antibody array. We further examined the role of interleukin-8 (IL-8) in contributing to resistance both in vitro and in vivo, using a loss- and gain-of-function approach. RESULTS Angiogenic profiling indicated that resistant cells expressed higher levels of proangiogenic factors including IL-8, interleukin-1α (IL-1α), vascular endothelial growth factor (VEGF), fibroblast growth factor-a (FGF-a), and tumor necrosis factor-α (TNF-α). IL-8 was the most differentially expressed protein. IL-8 signaling compensated for VEGF inhibition in endothelial cells. Downregulation of IL-8 resulted in sensitization of resistant tumors to bevacizumab by disrupting angiogenesis and enhancing endothelial cell apoptosis. Overexpression of IL-8 in sensitive tumors conferred resistance to bevacizumab. Serum analysis of HNSCC patients treated with a bevacizumab-containing regime revealed high baseline IL-8 levels in a subset of patients refractory to treatment but not in responders. CONCLUSIONS These results implicate IL-8 in mediating intrinsic resistance to bevacizumab in HNSCC. Hence, co-targeting of VEGF and IL-8 may help overcome resistance and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Rekha Gyanchandani
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamatodani T, Holmqvist B, Kjellén E, Johnsson A, Mineta H, Wennerberg J. Using intravital microscopy to observe bevacizumab-mediated anti-angiogenesis in human head and neck squamous cell carcinoma xenografts. Acta Otolaryngol 2012; 132:1324-33. [PMID: 23039202 DOI: 10.3109/00016489.2012.699195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONCLUSION The study showed the value of using intravital microscopy (IVM) analysis for the study of neoangiogenesis. It demonstrated that the model and the analytical methodology could be used to evaluate in detail the effects of treatment strategies for solid tumours. OBJECTIVES Neoangiogenesis is a key component of tumour progression, invasion and metastasis. In clinical trials monoclonal antibodies specific for vascular endothelial growth factor - VEGF (bevacizumab) - have been shown to significantly affect tumour progression when given in combination with standard chemotherapy, and also to improve the overall survival of patients. For squamous cell carcinoma of the head and neck (HNSCC), we still await definitive evidence of the effect of such treatment. The present study was designed to investigate the anti-angiogenesis effect of beviacizumab in green fluorescent protein (GFP)-labelled HNSCC xenografts using IVM technology. METHODS We performed IVM and used image analysis for quantification of angiogenesis and of effects of bevacizumab on cell viability, combined with histochemical and immunohistochemical analysis to standardize the digital analysis of changes in tumour vascularization and cell viability. RESULTS We found significant effects of bevacizumab on angiogenesis and cancer cell survival in HNSCC. Repeated injections of bevacizumab were found to provide the greatest effects.
Collapse
|
19
|
Denaro N, Russi EG, Colantonio I, Adamo V, Merlano MC. The role of antiangiogenic agents in the treatment of head and neck cancer. Oncology 2012; 83:108-16. [PMID: 22777379 DOI: 10.1159/000339542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/02/2012] [Indexed: 01/25/2023]
Abstract
Despite progress in the treatment of locally advanced head and neck squamous cell cancer (HNSCC), the prognosis remains dismal and 5-year survival does not exceed 40%. In metastatic and recurrent disease, in spite of the introduction of cetuximab in combination with platinum and fluorouracil, the median overall survival rate remains lower than 11 months. There are many possible reasons for these disappointing results including acquired drug resistance and tumor hypoxia. Angiogenesis plays an important role in HNSCC development and proliferation. Promising preclinical results with antiangiogenic therapies have engendered a number of clinical trials, but so far there have not been any conclusive results on the value of such treatments. This paper aims to review the role of angiogenesis in head and neck cancer and to suggest future perspectives.
Collapse
Affiliation(s)
- N Denaro
- Department of Oncology, Santa Croce e Carle General Hospital, Cuneo, Italy.
| | | | | | | | | |
Collapse
|
20
|
Specenier P, Vermorken JB. Biologic therapy in head and neck cancer: a road with hurdles. ISRN ONCOLOGY 2012; 2012:163752. [PMID: 22745915 PMCID: PMC3382358 DOI: 10.5402/2012/163752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/11/2012] [Indexed: 12/28/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in the vast majority of cases of squamous cell carcinoma of the head and neck (SCCHN). A high EGFR expression is associated with an unfavorable prognosis. Cetuximab is a chimeric human/murine IgG1 antibody which binds with high affinity to the EGFR. It is the only targeted agent which got approval for the treatment of SCCHN from the regulatory agencies of Europe and the United States, both in locoregionally advanced disease, in association with radiation, and in recurrent/metastatic disease. The outcome of trials involving other EGFR-directed monoclonal antibodies, that is, zalutumumab and panitumumab, was consistent with the results with cetuximab. However these trials failed to meet their primary endpoint. The results with EGFR-directed tyrosine kinase inhibitors have been disappointing. Other potential targets for treatment in SCCHN include the entire ErbB family, the vascular endothelial growth factor (VEGF) and its receptor (VEGFR), the insulin-like growth factor 1 receptor (IGF-1R), the insulin receptor (IR), histone deacetylases (HDAC), the mammalian target of rapamycin (mTOR), the platelet-derived growth factor receptor (PDGFR), heat-shock protein 90 (HSP90), nuclear factor-kappa B (NF-κB), aurora A or B, and phosphatidylinositol 3-kinase (PIK3CA).
Collapse
Affiliation(s)
- Pol Specenier
- Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Jan B. Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
21
|
Waterhouse DN, Yapp D, Verreault M, Anantha M, Sutherland B, Bally MB. Lipid-based nanoformulation of irinotecan: dual mechanism of action allows for combination chemo/angiogenic therapy. Nanomedicine (Lond) 2012; 6:1645-54. [PMID: 22077466 DOI: 10.2217/nnm.11.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A number of studies have outlined the antiangiogenic effects of cytotoxic agents when administered frequently at low doses. These studies suggest that the effect of the cytotoxic agent is on the vasculature within the tumor and it is assumed that there is little or negligible cytotoxicity. Liposomal drug delivery systems have the ability to provide a dual mechanism of activity where tumor accumulation can deliver high local concentrations of the drug at the site of action with concomitant slow release of the drug from carriers in the blood compartment that results in antivascular effects, similar to that achieved when dosing frequently at low levels. Although this dual mechanism of activity may be linked to other lipid nanoparticle formulations of anticancer drugs, this article summarizes the evidence supporting direct (cytotoxic) and indirect (antivascular) actions of a liposomal formulation of irinotecan.
Collapse
Affiliation(s)
- Dawn N Waterhouse
- BC Cancer Agency, Department of Experimental Therapeutics, 675 West 10th Avenue, Vancouver BC Canada, V5Z 1L3.
| | | | | | | | | | | |
Collapse
|