1
|
Zhao C. Exploring cell death pathways in oral cancer: mechanisms, therapeutic strategies, and future perspectives. Discov Oncol 2025; 16:395. [PMID: 40133563 PMCID: PMC11936869 DOI: 10.1007/s12672-025-02022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents a significant global health challenge, characterized by aggressive progression and poor therapeutic response despite advances in treatment modalities. This review provides a comprehensive analysis of diverse cell death mechanisms in OSCC, encompassing traditional pathways (apoptosis, autophagy, and necrosis), newly characterized mechanisms (ferroptosis, pyroptosis, and necroptosis), and emerging pathways (cuproptosis, anoikis, parthanatos, and entosis). By examining the molecular basis of these pathways, particularly the crucial roles of p53 signaling and miRNA regulation, we highlight how their dysregulation contributes to treatment resistance and tumor progression. The review synthesizes recent evidence demonstrating the complex interplay between these ten distinct cell death mechanisms and their impact on the tumor microenvironment and immune response. We evaluate innovative therapeutic approaches that target these pathways, including novel small molecules, combination strategies, and immunomodulatory treatments that exploit specific cell death mechanisms to enhance therapeutic efficacy. Special attention is given to emerging personalized medicine strategies that consider individual tumor characteristics and cell death pathway profiles. By integrating current challenges with future research directions, this review provides a framework for developing more effective treatments that can leverage multiple cell death pathways to overcome therapy resistance and improve outcomes for oral cancer patients.
Collapse
Affiliation(s)
- Chenyi Zhao
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, No.1 Xincheng Blvd, Songshan Lake National High-tech Industrial Development Zone, 523808, Guangdong Province, China.
| |
Collapse
|
2
|
Kandathil SA, Akhondi A, Kadletz-Wanke L, Heiduschka G, Engedal N, Brkic FF. The dual role of autophagy in HPV-positive head and neck squamous cell carcinoma: a systematic review. J Cancer Res Clin Oncol 2024; 150:56. [PMID: 38291202 PMCID: PMC10827959 DOI: 10.1007/s00432-023-05514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Human papilloma virus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) displays distinct epidemiological, clinical, and molecular characteristics compared to the negative counterpart. Alterations in autophagy play an important role in cancer, and emerging evidence indicates an interplay of autophagy in HNSCC carcinogenesis and tumor promotion. However, the influence of HPV infection on autophagy in HNSCC has received less attention and has not been previously reviewed. Therefore, we here aimed to systematically review the role of autophagy explicitly in HPV+ HNSCC. METHODS Studies accessible in PubMed, Embase, Scopus, and Web of Science investigating HNSCC, highlighting the molecular biological differences between HPV- and HPV+ HNSCC and its influences on autophagy in HNSCC were analyzed according to the PRISMA statement. A total of 10 articles were identified, included, and summarized. RESULTS The HPV16 E7 oncoprotein was reported to be involved in the degradation of AMBRA1 and STING, and to enhance chemotherapy-induced cell death via lethal mitophagy in HNSCC cells. Autophagy-associated gene signatures correlated with HPV-subtype and overall survival. Additionally, immunohistochemical (IHC) analyses indicate that high LC3B expression correlates with poor overall survival in oropharyngeal HNSCC patients. CONCLUSION HPV may dampen general bulk autophagic flux via degradation of AMBRA1 but may promote selective autophagic degradation of STING and mitochondria. Interpretations of correlations between autophagy-associated gene expressions or IHC analyses of autophagy-related (ATG) proteins in paraffin embedded tissue with clinicopathological features without biological validation need to be taken with caution.
Collapse
Affiliation(s)
- Sam Augustine Kandathil
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arian Akhondi
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
3
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Li S, Gao L, Liu J, Guo C, Zheng J, Zhi K, Ren W. The microRNA-10b-Bim axis promotes cancer progression through activating autophagy in oral squamous cell carcinoma. Cell Death Dis 2022; 8:373. [PMID: 36008375 PMCID: PMC9411559 DOI: 10.1038/s41420-022-01168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Autophagy is related to many cellular mechanisms and dysregulation of autophagy involves the pathological process in cancer. miR-10b activates autophagy, which promotes invasion and migration of OSCC. Its functional role in the mechanism of OSCC to autophagy remains to be unclear. Overexpression of miR-10b was followed by enhanced OSCC invasion and migration and activated autophagic protein, such as LC3II/ATG5. MiR-10b attracted Bim directly according to the Bio-informatics analyses and double luciferases reporter assays. Functional experiments further revealed that miR-10b could promote invasion and migration in vitro. In addition, miR-10b induced autophagy via inhibiting Bim in invasion and migration of OSCC. Notably, animal experiments confirmed that miR-10b-Bim promoted proliferation and autophagy in OSCC. In addition, this study provides a theoretical support for regulating the mechanism of OSCC by inducing autophagy with miR-10b-Bim as a target.
Collapse
Affiliation(s)
- Shaoming Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China.,School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China.,Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jiacheng Liu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China.,School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Chao Guo
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China.,School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China. .,Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No.1677 Wutaishan Road, Qingdao, 266555, China. .,Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| |
Collapse
|
5
|
Shree Harini K, Ezhilarasan D. Promising autophagy inhibitors: Therapeutic implications in oral cancer. Oral Oncol 2022; 131:105948. [PMID: 35667294 DOI: 10.1016/j.oraloncology.2022.105948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 12/29/2022]
Affiliation(s)
- K Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
6
|
Balachander K, Paramasivam A. Mitophagy: A therapeutic target for oral squamous cell carcinoma. Oral Oncol 2022; 129:105881. [DOI: 10.1016/j.oraloncology.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
|
7
|
Huang L, Yu X, Jiang Z, Zeng P. Novel Autophagy-Related Gene Signature Investigation for Patients With Oral Squamous Cell Carcinoma. Front Genet 2021; 12:673319. [PMID: 34220946 PMCID: PMC8248343 DOI: 10.3389/fgene.2021.673319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
The correlation between autophagy defects and oral squamous cell carcinoma (OSCC) has been previously studied, but only based on a limited number of autophagy-related genes in cell lines or animal models. The aim of the present study was to analyze differentially expressed autophagy-related genes through The Cancer Genome Atlas (TCGA) database to explore enriched pathways and potential biological function. Based on TCGA database, a signature composed of four autophagy-related genes (CDKN2A, NKX2-3, NRG3, and FADD) was established by using multivariate Cox regression models and two Gene Expression Omnibus datasets were applied for external validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to study the function of autophagy-related genes and their pathways. The most significant GO and KEGG pathways were enriched in several key pathways that were related to the progression of autophagy and OSCC. Furthermore, a prognostic risk score was constructed based on the four genes; patients were then divided into two groups (i.e., high risk and low risk) in terms of the median of risk score. Prognosis of the two groups and results showed that patients at the low-risk group had a much better prognosis than those at the high-risk group, regardless of whether they were in the training datasets or validation datasets. Multivariate Cox regression results indicated that the risk score of the autophagy-related gene signatures could greatly predict the prognosis of patients after controlling for several clinical covariates. The findings of the present study revealed that autophagy-related gene signatures play an important role in OSCC and are potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lihong Huang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghao Yu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Xu Z, Zhu L, Yang Y, Zhang Y, Lu M, Tao L, Xu W. Bifenthrin induces DNA damage and autophagy in Spodoptera frugiperda (Sf9) insect cells. In Vitro Cell Dev Biol Anim 2021; 57:264-271. [PMID: 33689124 DOI: 10.1007/s11626-021-00554-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Bifenthrin is one of the most commonly used synthetic pyrethroid insecticides. It targets the nervous system of insects, mainly acting on sodium channels in nerve cell membranes. The high use of bifrenthrin may lead to an increase in pest insect resistance. Additionally, there are only a few studies describing its cytotoxic action. A series of bioassays were carried out, and the results showed that bifenthrin has a significant ability to induce DNA damage and the inhibition of viability in Spodoptera frugiperda (Sf9) cells. Monodansylcadaverine staining and transmission electron microscope assays were used to observe significant levels of autophagosomes and mitochondrial dysfunction in the cytoplasm. Additionally, western blot analysis showed an upregulation in LC3-II and beclin-1 protein expression and a downregulation in p62 expression, which contributed to the cytotoxic effect of bifenthrin on Sf9 cells. Overall, bifenthrin significantly impacts the viability of Sf9 cells by inducing DNA damage and autophagy. These results provide a theoretical basis for understanding bifrenthin's mechanism of cytotoxicity.
Collapse
Affiliation(s)
- Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lianhua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaoqing Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
9
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Autophagy-A Hidden but Important Actor on Oral Cancer Scene. Int J Mol Sci 2020; 21:ijms21239325. [PMID: 33297472 PMCID: PMC7729760 DOI: 10.3390/ijms21239325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The duration of denture use, oral hygiene, smoking and male sex were identified as risk factors for oral mucosal lesions. As it is well known, all the oral mucosal lesions associated with risk factors have an important degree of malignity. Chronic mechanical irritation can be another cause of oral cancer and it is produced by the constant action of a deleterious agent from the oral cavity. Autophagy represents a complex evolutionary conserved catabolic process in which cells self-digest intracellular organelles in order to regulate their normal turnover and remove the damaged ones with compromised function to further maintain homeostasis. Autophagy is modulated by mTOR kinase and indirectly by PI3K/AKT survival pathway. Due to its dual capacity to either induce cell death or promote cell survival, important evidence pointed that autophagy has a two-faced role in response to chemotherapy in cancer. In conclusion, understanding how to overcome cytoprotective autophagy and how to take advantage of autophagic cell death is critical in order to enhance the cancer cells sensitivity to particular therapeutic agents.
Collapse
|
11
|
da Silva Filho AF, de Sousa LM, Consonni SR, da Rocha Pitta MG, Carvalho HF, de Melo Rêgo MJB. Galectin-3 Expression in Pancreatic Cell Lines Under Distinct Autophagy-Inducing Stimulus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1187-1197. [PMID: 33107424 DOI: 10.1017/s1431927620024526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypoxia and nutrient deprivation are responsible for inducing malignant behavior in neoplastic cells. In these conditions, metabolic stress leads the cells to enhance their autophagic flux and to activate key molecules for homeostasis maintenance. Galectin-3 (Gal-3) is upregulated in pancreatic cancer and it is activated under the hypoxic atmosphere. We aimed to analyze the most effective autophagic-inducing conditions in pancreatic ductal adenocarcinoma cells and the effect exerted under these conditions in association with hypoxia on the Gal-3 expression. Gal-3 and the microtubule-associated protein light chain 3 beta (LC3) were accessed through western blot and immunofluorescence. Degradative vacuole quantification was analyzed by transmission electronic microscopy, and inhibition of Gal-3 was performed using siRNA. According to the analyses, the most effective conditions in the inducement of autophagy for PANC-1 and MIA PaCa-2 cells were nutritional deprivation and complete amino acid/glucose deprivation, respectively. PANC-1 cells presented higher Gal-3 when they were submitted to 24 h of nutritional deprivation alone and simultaneously nutritional and oxygen deprivation. Inhibition of Gal-3 causes a decrease of LC3 levels in all experimental conditions. These results confirm that Gal-3 is modulated by microenvironment factors and the possibility of Gal-3 participating in an adaptive response from PDAC cells to extreme conditions.
Collapse
Affiliation(s)
- Antônio Felix da Silva Filho
- Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco50670-901, Brazil
| | - Lizandra Maia de Sousa
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo13083-970, Brazil
| | - Silvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo13083-970, Brazil
| | - Maira Galdino da Rocha Pitta
- Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco50670-901, Brazil
| | - Hernandes Faustino Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo13083-970, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco50670-901, Brazil
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Therapeutic Innovation Research Center- Suelly Galdino (NUPIT-SG), Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco50670-901, Brazil
| |
Collapse
|
12
|
Ilimaquinone Induces Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma Cells. Biomedicines 2020; 8:biomedicines8090296. [PMID: 32825464 PMCID: PMC7555415 DOI: 10.3390/biomedicines8090296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 μM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ’s anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy.
Collapse
|
13
|
Association of ATG4B and Phosphorylated ATG4B Proteins with Tumorigenesis and Prognosis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11121854. [PMID: 31771238 PMCID: PMC6966594 DOI: 10.3390/cancers11121854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the major leading causes of cancer death worldwide due to the limited availability of biomarkers and therapeutic targets. Autophagy related protease 4B (ATG4B) is an essential protease for the autophagy machinery, and ATG4B phosphorylation at Ser383/392 increases its proteolytic activity. ATG4B expression and activation are crucial for cancer cell proliferation and invasion. However, the clinical relevance of ATG4B and phospho-Ser383/392-ATG4B for OSCC remains unknown, particularly in buccal mucosal SCC (BMSCC) and tongue SCC (TSCC). With a tissue microarray comprising specimens from 498 OSCC patients, including 179 BMSCC and 249 TSCC patients, we found that the protein levels of ATG4B and phospho-Ser383/392-ATG4B were elevated in the tumor tissues of BMSCC and TSCC compared with those in adjacent normal tissues. High protein levels of ATG4B were significantly associated with worse disease-specific survival (DSS) in OSCC patients, particularly in patients with tumors at advanced stages. In contrast, phospho-Ser383/392-ATG4B expression was correlated with poor disease-free survival (DFS) in TSCC patients. Moreover, ATG4B protein expression was positively correlated with phospho-Ser383/392-ATG4B expression in both BMSCC and TSCC. However, high coexpression levels of ATG4B and phospho-Ser383/392-ATG4B were associated with poor DFS only in TSCC patients, whereas they had no significant association with DSS in BMSCC and TSCC patients. In addition, silencing ATG4B with an antisense oligonucleotide (ASO) or small interfering RNA (siRNA) diminished cell proliferation of TW2.6 and SAS oral cancer cells. Further, knockdown of ATG4B reduced cell migration and invasion of oral cancer cells. Taken together, these findings suggest that ATG4B might be a biomarker for diagnosis/prognosis of OSCC and a potential therapeutic target for OSCC patients.
Collapse
|
14
|
Yang Y, Chen D, Liu H, Yang K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis 2019; 10:41. [PMID: 30674868 PMCID: PMC6381212 DOI: 10.1038/s41419-018-1280-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Recent studies showed that lncRNA CASC9 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of CASC9 in oral squamous cell carcinoma (OSCC) remain unknown. In this study, we found for the first time that CASC9 was remarkably upregulated in OSCC tissues and cell lines compared with paired noncancerous tissues and normal oral epithelial cells. Highly expressed CASC9 is strongly associated with tumor size, clinical stage, regional lymph node metastasis and overall survival time in OSCC patients. In vitro, CASC9 knockdown in OSCC cells SCC15 and CAL27 significantly promotes autophagy and apoptosis, while inhibiting proliferation. Moreover, the expression levels of p-AKT, p-mTOR, P62 and BCL-2 were significantly decreased, while the expression levels of BAX and the LC3BII/LC3BI ratio were increased in CASC9-knockdown SCC15 and CAL27 cells. After the addition of the AKT activator SC79 in CASC9-knockdown SCC15 and CAL27 cells, we found that the increased autophagy and apoptosis were remarkably rescued. Furthermore, the increased apoptosis was remarkably rescued in CASC9-knockdown OSCC cells treated with the autophagy inhibitor Autophinib. In addition, CASC9 depletion suppressed tumor growth in vivo. In conclusion, our findings demonstrate that lncRNA CASC9 promotes OSCC progression through enhancing cell proliferation and suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway. CASC9 could potentially be used as a valuable biomarker for OSCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Yixin Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huan Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med 2018; 22:1894-1908. [PMID: 29363886 PMCID: PMC5824386 DOI: 10.1111/jcmm.13474] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Honokiol, an active natural product derived from Magnolia officinalis, exerted anticancer effects through a variety of mechanisms on multiple types of cancers. In this study, the molecular mechanisms of honokiol in suppressing the human oral squamous cell carcinoma (OSCC) cells were evaluated. Treatment of two OSCC cell lines with honokiol resulted in reducing the cell proliferation and arresting the cell cycle at G1 stage which was correlated with the down‐regulation of Cdk2 and Cdk4 and the up‐regulation of cell cycle suppressors, p21 and p27. In addition, the caspase‐dependent programmed cell death was substantially detected, and the autophagy was induced as the autophagosome formation and autophagic flux proceeded. Modulation of autophagy by autophagic inducer, rapamycin or inhibitors, 3‐MA or bafilomycin, potentiated the honokiol‐mediated anti‐OSCC effects where honokiol exerted multiple actions in suppression of MAPK pathway and regulation of Akt/mTOR or AMPK pathways. As compared to clinical therapeutic agent, 5‐FU, honokiol exhibited more potent activity against OSCC cells and synergistically enhanced the cytotoxic effect of 5‐FU. Furthermore, orally administrated honokiol exerted effective antitumour activity in vivo in OSCC‐xenografted mice. Thus, this study revealed that honokiol could be a promising candidate in preventing human OSCCs.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Development Center for Biotechnology, Institute of Biologics, New Taipei City, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology and Blood Bank, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| |
Collapse
|
16
|
Liang L, Luo H, He Q, You Y, Fan Y, Liang J. Investigation of cancer-associated fibroblasts and p62 expression in oral cancer before and after chemotherapy. J Craniomaxillofac Surg 2018; 46:605-610. [PMID: 29439841 DOI: 10.1016/j.jcms.2017.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/23/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study is to investigate the expression of the autophagy protein p62 in oral squamous cell carcinoma (OSCC) cells before and after chemotherapy. We also detected cancer-associated fibroblasts (CAFs) in these OSCC samples to explore the roles of p62 and CAFs in chemotherapy. MATERIALS AND METHODS Immunohistochemistry was used to analyze the expression of p62 and α-SMA in 26 paired OSCC samples before and after chemotherapy. The relationships between clinicopathological features, clinical outcome and the expression of these proteins were analyzed. RESULTS Our results indicated an increased stromal α-SMA expression after chemotherapy in OSCC samples. High p62 expression of OSCC cells closely correlated with stromal α-SMA expression after chemotherapy. Furthermore, the post-chemotherapy p62 expression was associated with the prognosis for OSCC patients. CONCLUSION These results suggest that chemotherapy may increase CAFs in OSCC. High cytoplasmic p62 expression may serve as a poor prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Lizhong Liang
- Department of ENT, Head and Neck, Oral and Maxillofacial Surgery, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China
| | - Haiji Luo
- Department of Stomatology, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China
| | - Qifen He
- Department of Stomatology, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China
| | - Yingying You
- Department of Stomatology, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China
| | - Yunping Fan
- Department of ENT, Head and Neck, Oral and Maxillofacial Surgery, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China.
| | - Jun Liang
- Department of Stomatology, (Head of the institution: Professor Yunping Fan), Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
17
|
Autophagy and oral cancers: A short review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2017; 119:37-39. [PMID: 29128597 DOI: 10.1016/j.jormas.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/05/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Autophagy is a catabolic process, which involves recycling of cellular elements and it seems to play a major role in etiopathogenesis of cancers. Autophagy is thought to buffer metabolic stress, thereby aiding in cell survival. Also, it is found that inhibiting autophagy under deficient nutrition can restore cell death to apoptosis. Therefore, autophagy plays a dual role in cancer therapeutics. Globally oral cancer is a major concern of numerous deaths, so comprehensive work needs to be undertaken in the field of its progression and to determine positive treatment modalities. There exists a serious dearth of knowledge to understand and comprehend the process of autophagy, and it is beyond doubt that further research in this field would bring forth several new methods of cancer prevention and treatment.
Collapse
|
18
|
Monitoring Autophagy Immunohistochemically and Ultrastructurally during Human Head and Neck Carcinogenesis. Relationship with the DNA Damage Response Pathway. Int J Mol Sci 2017; 18:ijms18091920. [PMID: 28880214 PMCID: PMC5618569 DOI: 10.3390/ijms18091920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a catabolic process that preserves cellular homeostasis. Its exact role during carcinogenesis is not completely defined. Specifically in head and neck cancer, such information from clinical settings that comprise the whole spectrum of human carcinogenesis is very limited. Towards this direction, we examined the in situ status of the autophagy-related factors, Beclin-1, microtubule-associated protein 1 light chain 3, member B (LC3B) and sequestosome 1/p62 (p62) in clinical material covering all histopathological stages of human head and neck carcinogenesis. This material is unique as each panel of lesions is derived from the same patient and moreover we have previously assessed it for the DNA damage response (DDR) activation status. Since Beclin-1, LC3B and p62 reflect the nucleation, elongation and degradation stages of autophagy, respectively, their combined immunohistochemical (IHC) expression profiles could grossly mirror the autophagic flux. This experimental approach was further corroborated by ultrastructural analysis, applying transmission electron microscopy (TEM). The observed Beclin-1/LC3B/p62 IHC patterns, obtained from serial sections analysis, along with TEM findings are suggestive of a declined authophagic activity in preneoplastic lesions that was restored in full blown cancers. Correlating these findings with DDR status in the same pathological stages are indicative of: (i) an antitumor function of autophagy in support to that of DDR, possibly through energy deprivation in preneoplastic stages, thus preventing incipient cancer cells from evolving; and (ii) a tumor-supporting role in the cancerous stage.
Collapse
|
19
|
Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, Juan YN, Chiu HY, Yang JS, Wang CC. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 2017; 50:873-882. [PMID: 28197628 DOI: 10.3892/ijo.2017.3866] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is known to be an effective chemo-preventive phytochemical against multiple tumor cells. However, the increasing drug resistance avoids the cancer treatment in oral cavity cancer. In this study, we investigated the oral antitumor activity of resveratrol and its mechanism in cisplatin-resistant human oral cancer CAR cells. Our results demonstrated that resveratrol had an extremely low toxicity in normal oral cells and provoked autophagic cell death to form acidic vesicular organelles (AVOs) and autophagic vacuoles in CAR cells by acridine orange (AO) and monodansylcadaverine (MDC) staining. Either DNA fragmentation or DNA condensation occurred in resveratrol-triggered CAR cell apoptosis. These inhibitors of PI3K class III (3-MA) and AMP-activated protein kinase (AMPK) (compound c) suppressed the autophagic vesicle formation, LC3-II protein levels and autophagy induced by resveratrol. The pan-caspase inhibitor Z-VAD-FMK attenuated resveratrol-triggered cleaved caspase-9, cleaved caspase-3 and cell apoptosis. Resveratrol also enhanced phosphorylation of AMPK and regulated autophagy- and pro-apoptosis-related signals in resveratrol-treated CAR cells. Importantly, resveratrol also stimulated the autophagic mRNA gene expression, including Atg5, Atg12, Beclin-1 and LC3-II in CAR cells. Overall, our findings indicate that resveratrol is likely to induce autophagic and apoptotic death in drug-resistant oral cancer cells and might become a new approach for oral cancer treatment in the near future.
Collapse
Affiliation(s)
- Chao-Hsiang Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chao-Ying Lee
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| |
Collapse
|