1
|
Malone SG, Davis CN, Piserchia Z, Setzer MR, Toikumo S, Zhou H, Winterlind EL, Gelernter J, Justice A, Leggio L, Rentsch CT, Kranzler HR, Gray JC. Alcohol use disorder and body mass index show genetic pleiotropy and shared neural associations. Nat Hum Behav 2025; 9:1056-1066. [PMID: 40164914 DOI: 10.1038/s41562-025-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Despite neurobiological overlap, alcohol use disorder (AUD) and body mass index (BMI) show minimal genetic correlation (rg), possibly due to mixed directions of shared variants. Here we applied MiXeR to investigate shared genetic architecture between AUD and BMI, conjunctional false discovery rate to detect shared loci and their directional effect, local analysis of (co)variant association for local rg, functional mapping and annotation to identify lead single-nucleotide polymorphisms, Genotype-Tissue Expression (GTEx) to examine tissue enrichment and BrainXcan to assess associations with brain phenotypes. MiXeR indicated 82.2% polygenic overlap, despite an rg of -0.03. The conjuctional false discovery rate method identified 132 shared lead single-nucleotide polymorphisms, with 53 novel, showing both concordant and discordant effects. GTEx analyses identified overexpression in multiple brain regions. Amygdala and caudate nucleus volumes were associated with AUD and BMI. Opposing variant effects explain the minimal rg between AUD and BMI, with implicated brain regions involved in executive function and reward, clarifying their polygenic overlap and neurobiological mechanisms.
Collapse
Affiliation(s)
- Samantha G Malone
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Christal N Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Piserchia
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Michael R Setzer
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Emma L Winterlind
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Christopher T Rentsch
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene and Tropical Medicine, London, UK
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua C Gray
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, USA.
| |
Collapse
|
2
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. Neuroimage 2025; 310:121154. [PMID: 40101866 DOI: 10.1016/j.neuroimage.2025.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/05/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, including ingestion and metabolic control. To date, no study has investigated how brain connections during exposure to food cues are association with peripheral insulin sensitivity in children. METHODS We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with lower and higher ISI, adjusted for age and BMIz. RESULTS Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on mean brain responses to food cues. CONCLUSIONS In response to food cues, children with lower peripheral insulin sensitivity exhibited distinctive patterns of neural connectivity, notably in the insula's functional connections, when contrasted with their counterparts with higher peripheral insulin sensitivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Pereira R, Araújo J, Costa A, Severo M, Oliveira A. The association between the duration and degree of adiposity and appetitive trait trajectory profiles from childhood into early adolescence - results from the Generation XXI cohort. Int J Obes (Lond) 2025:10.1038/s41366-025-01765-x. [PMID: 40195390 DOI: 10.1038/s41366-025-01765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Body weight in childhood may predict appetitive traits. However, studies on the accumulated effect of adiposity and approaches using the clustering of different appetitive traits are lacking. OBJECTIVE To test associations between a cumulative measure of adiposity [from 4 to 13 years old (y)] and appetitive trait trajectory profiles (from 7 to 13 y), as well as to explore whether body mass index (BMI) at specific ages is associated with these profiles, independently of the cumulative BMI. METHODS Participants are from the Generation XXI birth cohort (Porto, Portugal) with weight and height measured at 4, 7, 10 and 13 y and complete data in variables of interest (final sample of n = 3339). Age- and sex-specific adjusted BMI standard deviation scores were calculated. The duration and degree of BMI were summarized through the BMI area under the curve (BMIAUC), as an indicator of accumulated adiposity. Appetitive traits were assessed at 7, 10 and 13 y, using the validated Children's Eating Behaviour Questionnaire. Six previously identified profiles of appetite (groups of individuals with similar patterns of trajectories) were considered: 'moderate appetite' (reference profile), 'small appetite but increasing', 'small to moderate appetite', 'avid appetite', 'increasing appetite' and 'smallest appetite'. Multinomial logistic regressions tested associations between BMIAUC and profiles. RESULTS The median monthly exposure to BMIAUC was 17.4 kg/m2. Except for 'increasing appetite', BMIAUC was associated with all profiles: positively with the 'avid appetite' (OR = 1.47, 95% CI: 1.40-1.55) and negatively with the remaining ones, particularly with 'smallest appetite' (OR = 0.78, 95% CI: 0.73-0.83). Having overweight/obesity at 7 y increased 113% the odds of having an 'avid appetite' profile (OR = 2.13 95% CI: 1.42-3.21). CONCLUSION Children with the highest cumulative adiposity between 4 and 13 y were more likely to present an 'avid appetite' during childhood. Additionally, having excessive weight at age 7 may indicate a higher appetite in subsequent years.
Collapse
Affiliation(s)
- Rita Pereira
- EPIUnit ITR, Institute of Public Health of the University of Porto [Instituto de Saúde Pública da Universidade do Porto], University of Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Joana Araújo
- EPIUnit ITR, Institute of Public Health of the University of Porto [Instituto de Saúde Pública da Universidade do Porto], University of Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine [Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto], University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Alexandra Costa
- EPIUnit ITR, Institute of Public Health of the University of Porto [Instituto de Saúde Pública da Universidade do Porto], University of Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Milton Severo
- EPIUnit ITR, Institute of Public Health of the University of Porto [Instituto de Saúde Pública da Universidade do Porto], University of Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar [Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto], University of Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Andreia Oliveira
- EPIUnit ITR, Institute of Public Health of the University of Porto [Instituto de Saúde Pública da Universidade do Porto], University of Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
- Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine [Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto], University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
4
|
Malone SG, Davis CN, Piserchia Z, Setzer MR, Toikumo S, Zhou H, Winterlind EL, Gelernter J, Justice A, Leggio L, Rentsch CT, Kranzler HR, Gray JC. Alcohol use disorder and body mass index show genetic pleiotropy and shared neural associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.03.24306773. [PMID: 38746260 PMCID: PMC11092735 DOI: 10.1101/2024.05.03.24306773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Despite neurobiological overlap, alcohol use disorder (AUD) and body mass index (BMI) show minimal genetic correlation (rg), possibly due to mixed directions of shared variants. We applied MiXeR to investigate shared genetic architecture between AUD and BMI, conjunctional false discovery rate (conjFDR) to detect shared loci and their directional effect, Local Analysis of (co)Variant Association (LAVA) for local rg, Functional Mapping and Annotation (FUMA) to identify lead single nucleotide polymorphisms (SNPs), Genotype-Tissue Expression (GTEx) to examine tissue enrichment, and BrainXcan to assess associations with brain phenotypes. MiXeR indicated 82.2% polygenic overlap, despite a rg of -.03. ConjFDR identified 132 shared lead SNPs, with 53 novel, showing both concordant and discordant effects. GTEx analyses identified overexpression in multiple brain regions. Amygdala and caudate nucleus volumes were associated with AUD and BMI. Opposing variant effects explain the minimal rg between AUD and BMI, with implicated brain regions involved in executive function and reward, clarifying their polygenic overlap and neurobiological mechanisms.
Collapse
Affiliation(s)
- Samantha G. Malone
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, United States
| | - Christal N. Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA 19104, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zachary Piserchia
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, United States
| | - Michael R. Setzer
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD 20814, United States
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA 19104, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Emma L. Winterlind
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, United States
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Amy Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, United States
- Yale University School of Public Health, New Haven, CT 06510, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224, United States
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI 02903, United States
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, United States
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Christopher T. Rentsch
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, United States
- London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA 19104, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joshua C. Gray
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD 20814, United States
| |
Collapse
|
5
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
6
|
Pereira R, Costa A, Warkentin S, Vilela S, Oliveira A. Sleep duration is associated with appetitive traits in school-age years - results from the Generation XXI birth cohort. Appetite 2024; 199:107384. [PMID: 38688409 DOI: 10.1016/j.appet.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Sleep may influence appetite regulation through physiological and neurocognitive pathways. However, the association between sleep and appetite in childhood has been scarcely reported, particularly using a prospective design. We aimed to test associations between sleep duration at 7 years of age (y) and appetitive traits at both 7 and 10 y. Participants are from the population-based birth cohort Generation XXI (Porto, Portugal), at 7 (n = 2437) and 10 y (n = 1938) follow-ups. Data on sleep was gathered at 7 y and, considering bedtime and get-up time, total mean sleep duration was calculated and further categorized according to the 10th and 90th percentiles. Appetitive traits were assessed at 7 and 10 y using the parent-reported Children's Eating Behaviour Questionnaire. Associations were tested through Generalized Linear Models (co-variates: child's sex; maternal age, education and pre-pregnancy body mass index at 7 y). At 10 y, associations were further adjusted for the respective appetitive trait at 7 y. Children slept a mean of 10.2 h/night, and 13% and 9% slept ≤9.5 and ≥ 11.0 h/night at 7 y, respectively. For each additional hour in sleep duration, children scored 0.078 (99%CI: -0.145; -0.011) lower on Food Responsiveness, 0.065 (99%CI: -0.129; -0.002) lower on Emotional Undereating and 0.096 (99%CI: -0.161; -0.032) lower on Food Fussiness. Lastly, children sleeping ≤9.5 h/night scored higher on Food Responsiveness (β = 0.145 99%CI: 0.020; 0.271); while those sleeping ≥11.0 h/night scored lower on Food Fussiness (β = -0.255 99%CI: -0.370; -0.079). No significant prospective associations were found. In conclusion, in 7 y children, sleep duration was cross-sectionally associated with lower scores on food approach (Food Responsiveness) and avoidant traits (Emotional Undereating and Food Fussiness). However, the magnitude of the associations was small and further studies are warranted.
Collapse
Affiliation(s)
- Rita Pereira
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto [Institute of Public Health, University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade Do Porto, [Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal
| | - Alexandra Costa
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto [Institute of Public Health, University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade Do Porto, [Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal
| | - Sarah Warkentin
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto [Institute of Public Health, University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade Do Porto, [Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal
| | - Sofia Vilela
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto [Institute of Public Health, University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade Do Porto, [Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal
| | - Andreia Oliveira
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto [Institute of Public Health, University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade Do Porto, [Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto], Rua Das Taipas, N° 135, 4050-600, Porto, Portugal; Departamento de Saúde Pública e Ciências Forenses e Educação Médica, Faculdade de Medicina, Universidade Do Porto, [Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto], Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
7
|
Hoang H, Lacadie C, Hwang J, Lam K, Elshafie A, Rosenberg SB, Watt C, Sinha R, Constable RT, Savoye M, Seo D, Belfort-DeAguiar R. Low-calorie diet-induced weight loss is associated with altered brain connectivity and food desire in obesity. Obesity (Silver Spring) 2024; 32:1362-1372. [PMID: 38831482 PMCID: PMC11211061 DOI: 10.1002/oby.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/31/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE The main objective of this study is to better understand the effects of diet-induced weight loss on brain connectivity in response to changes in glucose levels in individuals with obesity. METHODS A total of 25 individuals with obesity, among whom 9 had a diagnosis of type 2 diabetes, underwent functional magnetic resonance imaging (fMRI) scans before and after an 8-week low-calorie diet. We used a two-step hypereuglycemia clamp approach to mimic the changes in glucose levels observed in the postprandial period in combination with task-mediated fMRI intrinsic connectivity distribution (ICD) analysis. RESULTS After the diet, participants lost an average of 3.3% body weight. Diet-induced weight loss led to a decrease in leptin levels, an increase in hunger and food intake, and greater brain connectivity in the parahippocampus, right hippocampus, and temporal cortex (limbic-temporal network). Group differences (with vs. without type 2 diabetes) were noted in several brain networks. Connectivity in the limbic-temporal and frontal-parietal brain clusters inversely correlated with hunger. CONCLUSIONS A short-term low-calorie diet led to a multifaceted body response in patients with obesity, with an increase in connectivity in the limbic-temporal network (emotion and memory) and hormone and eating behavior changes that may be important for recovering the weight lost.
Collapse
Affiliation(s)
- Hai Hoang
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
| | - Cheryl Lacadie
- Department of Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Janice Hwang
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
- Division of Endocrinology, University of North Carolina, Chapel Hill NC
| | - Katherine Lam
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
| | - Ahmed Elshafie
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel B Rosenberg
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Charles Watt
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Mary Savoye
- Department of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Renata Belfort-DeAguiar
- Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut
- Division of Diabetes, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
8
|
Senol E, Mohammad H. Current perspectives on brain circuits involved in food addiction-like behaviors. J Neural Transm (Vienna) 2024; 131:475-485. [PMID: 38216705 DOI: 10.1007/s00702-023-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
There is an emerging view that the increased availability of energy-dense foods in our society is contributing to excessive food consumption which could lead to food addiction-like behavior. Particularly, compulsive eating patterns are predominant in people suffering from eating disorders (binge-eating disorder, bulimia and anorexia nervosa) and obesity. Phenotypically, the behavioral pattern exhibits a close resemblance to individuals suffering from other forms of addiction (drug, sex, gambling). Growing body of evidence in neuroscience research is showing that excessive consumption of energy-dense foods alters the brain circuits implicated in reward, decision-making, control, habit formation, and emotions that are central to drug addiction. Here, we review the current understanding of the circuits of food addiction-like behaviors and highlight the future possibility of exploring those circuits to combat obesity and eating disorders.
Collapse
Affiliation(s)
- Esra Senol
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hasan Mohammad
- Centre de Recherche en Biomédicine de Strasbourg (CRBS), L'Institut National de La Santé Et de La Recherche Médicale (Inserm) U1114, University of Strasbourg, Strasbourg, France.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India.
| |
Collapse
|
9
|
Guo J, Wan X, Lian J, Ma H, Dong D, Liu Y, Zhao J. Electrophysiological Characteristics of Inhibitive Control for Adults with Different Physiological or Psychological Obesity. Nutrients 2024; 16:1252. [PMID: 38732499 PMCID: PMC11085209 DOI: 10.3390/nu16091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Individuals exhibiting high scores on the fatness subscale of the negative-physical-self scale (NPSS-F) are characterized by heightened preoccupation with body fat accompanied by negative body image perceptions, often leading to excessive dieting behaviors. This demographic constitutes a considerable segment of the populace in China, even among those who are not obese. Nonetheless, scant empirical inquiries have delved into the behavioral and neurophysiological profiles of individuals possessing a healthy body mass index (BMI) alongside elevated NPSS-F scores. This study employed an experimental paradigm integrating go/no-go and one-back tasks to assess inhibitory control and working memory capacities concerning food-related stimuli across three adult cohorts: those with normal weight and low NPSS-F scores, those with normal weight and high NPSS-F scores, and individuals classified as obese. Experimental stimuli comprised high- and low-caloric-food pictures with concurrent electroencephalogram (EEG) and photoplethysmogram (PPG) recordings. Individuals characterized by high NPSS-F scores and normal weight exhibited distinctive electrophysiological responses compared to the other two cohorts, evident in event-related potential (ERP) components, theta and alpha band oscillations, and heart rate variability (HRV) patterns. In essence, the findings underscore alterations in electrophysiological reactivity among individuals possessing high NPSS-F scores and a healthy BMI in the context of food-related stimuli, underscoring the necessity for increased attention to this demographic alongside individuals affected by obesity.
Collapse
Affiliation(s)
- Jiaqi Guo
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Xiaofang Wan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Junwei Lian
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Hanqing Ma
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Debo Dong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jia Zhao
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Liao QM, Zhang ZJ, Yang X, Wei JX, Wang M, Dou YK, Du Y, Ma XH. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder. J Affect Disord 2024; 351:259-267. [PMID: 38266932 DOI: 10.1016/j.jad.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zi-Jian Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Kai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Prunell-Castañé A, Beyer F, Witte V, Sánchez Garre C, Hernán I, Caldú X, Jurado MÁ, Garolera M. From the reward network to whole-brain metrics: structural connectivity in adolescents and young adults according to body mass index and genetic risk of obesity. Int J Obes (Lond) 2024; 48:567-574. [PMID: 38145996 DOI: 10.1038/s41366-023-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Obesity is a multifactorial condition. Genetic variants, such as the fat mass and obesity related gene (FTO) polymorphism, may increase the vulnerability of developing obesity by disrupting dopamine signaling within the reward network. Yet, the association of obesity, genetic risk of obesity, and structural connectivity of the reward network in adolescents and young adults remains unexplored. We investigate, in adolescents and young adults, the structural connectivity differences in the reward network and at the whole-brain level according to body mass index (BMI) and the FTO rs9939609 polymorphism. METHODS One hundred thirty-two adolescents and young adults (age range: [10, 21] years, BMI z-score range: [-1.76, 2.69]) were included. Genetic risk of obesity was determined by the presence of the FTO A allele. Whole-brain and reward network structural connectivity were analyzed using graph metrics. Hierarchical linear regression was applied to test the association between BMI-z, genetic risk of obesity, and structural connectivity. RESULTS Higher BMI-z was associated with higher (B = 0.76, 95% CI = [0.30, 1.21], P = 0.0015) and lower (B = -0.003, 95% CI = [-0.006, -0.00005], P = 0.048) connectivity strength for fractional anisotropy at the whole-brain level and of the reward network, respectively. The FTO polymorphism was not associated with structural connectivity nor with BMI-z. CONCLUSIONS We provide evidence that, in healthy adolescents and young adults, higher BMI-z is associated with higher connectivity at the whole-brain level and lower connectivity of the reward network. We did not find the FTO polymorphism to correlate with structural connectivity. Future longitudinal studies with larger sample sizes are needed to assess how genetic determinants of obesity change brain structural connectivity and behavior.
Collapse
Affiliation(s)
- Anna Prunell-Castañé
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Frauke Beyer
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Veronica Witte
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Consuelo Sánchez Garre
- Pediatric Endocrinology Unit, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - Imma Hernán
- Molecular Genetics Unit, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| | - Maite Garolera
- Brain, Cognition and Behavior: Clinical Research, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
- Neuropsychology Unit, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| |
Collapse
|
12
|
Fuchs BA, Pearce AL, Rolls BJ, Wilson SJ, Rose EJ, Geier CF, Garavan H, Keller KL. The Cerebellar Response to Visual Portion Size Cues Is Associated with the Portion Size Effect in Children. Nutrients 2024; 16:738. [PMID: 38474866 DOI: 10.3390/nu16050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The neural mechanisms underlying susceptibility to eating more in response to large portions (i.e., the portion size effect) remain unclear. Thus, the present study examined how neural responses to portion size relate to changes in weight and energy consumed as portions increase. Associations were examined across brain regions traditionally implicated in appetite control (i.e., an appetitive network) as well as the cerebellum, which has recently been implicated in appetite-related processes. Children without obesity (i.e., BMI-for-age-and-sex percentile < 90; N = 63; 55% female) viewed images of larger and smaller portions of food during fMRI and, in separate sessions, ate four meals that varied in portion size. Individual-level linear and quadratic associations between intake (kcal, grams) and portion size (i.e., portion size slopes) were estimated. The response to portion size in cerebellar lobules IV-VI was associated with the quadratic portion size slope estimated from gram intake; a greater response to images depicting smaller compared to larger portions was associated with steeper increases in intake with increasing portion sizes. Within the appetitive network, neural responses were not associated with portion size slopes. A decreased cerebellar response to larger amounts of food may increase children's susceptibility to overeating when excessively large portions are served.
Collapse
Affiliation(s)
- Bari A Fuchs
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alaina L Pearce
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara J Rolls
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma J Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles F Geier
- Human Development and Family Science, University of Georgia, Athens, GA 31793, USA
| | - Hugh Garavan
- Department of Psychological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Kathleen L Keller
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579924. [PMID: 38405878 PMCID: PMC10888780 DOI: 10.1101/2024.02.12.579924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Objective Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, e.g. ingestion and metabolic control. To date, no study has investigated whether brain responses to food cues in children are associated with peripheral insulin sensitivity. Methods We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with low and high ISI, adjusted for age and BMIz. Results Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on whole-brain food-cue reactivity. Conclusions Children with low peripheral insulin sensitivity showed differences in food cue evoked response particularly in insula functional connectivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Moore H, White MJ, Finlayson G, King N. Can smartphone-based response inhibition training elicit sustained changes in appetite, preference, and cravings for energy-dense foods? A free-living randomized controlled trial. Br J Health Psychol 2024; 29:165-184. [PMID: 37704590 DOI: 10.1111/bjhp.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Food-specific response inhibition training has been implemented as a strategy to modify food choices and reward-related eating behaviours, but short-term studies have produced equivocal findings. OBJECTIVE To longitudinally assess the effect of a smartphone-based response inhibition intervention on food reward, hedonic eating drive, and cravings in a free-living setting. METHODS 84 adults (Mage = 30.49, SDage = 13.01, 52 female) with high responsivity to food cues or overweight/obesity were randomly assigned to a response inhibition training intervention (n = 45) or a control game (n = 39) at home during a training week, followed by a week with no training. Primary analyses compared groups on measures of explicit liking and implicit wanting for food of different energy densities, food cravings, and reward-related eating throughout this two-week period. RESULTS A reduction was observed in explicit liking and implicit wanting for energy-dense foods from baseline to post-training independent of condition (ps < .001). These changes from baseline were sustained after a 1-week latency period, also independent of condition (ps < .001). These effects coincided with similar observations of hedonic eating drive, tonic cravings, and control over cravings during the observation period (ps < .01). CONCLUSIONS Although significant reductions in reward-related appetite were observed, free-living response inhibition training did not offer additional benefit over a control activity. Future intervention studies with observable food intake are needed to investigate which appetitive mechanisms most reliably predict eating behaviour over time. TRIAL REGISTRATION Retrospectively registered with ANZCTR [ACTRN12622001502729].
Collapse
Affiliation(s)
- Halim Moore
- Queensland University of Technology, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
| | - Melanie J White
- Queensland University of Technology, School of Psychology and Counselling, Brisbane, Queensland, Australia
| | | | - Neil King
- Queensland University of Technology, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Nakamura Y, Okemoto M, Ikuta T. Food go/no-go training alters neural circuits for food evaluation for appetite reduction. Appetite 2024; 192:107099. [PMID: 37890532 DOI: 10.1016/j.appet.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Food go/no-go training has been traditionally categorized as a type of inhibitory training that decreases the desire for high-calorie food consumption. This training requires participants to either respond or withhold their responses to presented items with go cues or food items with no-go cues, respectively. Recent findings have suggested that this training may devalue food items associated with no-go cues instead of facilitating inhibitory control, leading to reduced food consumption. We thus hypothesized that food go/no-go training would alter the brain response to food items with no-go cues in food evaluation regions. To examine this hypothesis, we conducted a repeated measures functional magnetic resonance imaging using food images in healthy participants, who underwent 3 weeks of food go/no-go training (n = 26) using high- and low-calorie food items paired with no-go cues (no-go food) and go cues (go food), respectively, and control training (n = 24). The food go/no-go training reduced the ratings for the desire to eat no-go foods and increased the ratings for go foods. The reduction in no-go food rating was positively associated with a decrease in daily snack intake. The neural responses in the food evaluation regions increased for go foods. Moreover, the functional connectivity of those regions was altered. The food go/no-go training did not decrease impulsivity traits or increase restrained eating, which are associated with inhibitory control. Overall, food go/no-go training influenced the brain regions associated with food evaluation, thus devaluating no-go foods and reducing the daily snack intake. Accordingly, food go/no-go training could promote healthier food choices.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Mizuki Okemoto
- The Natural Sciences II, College of Arts and Sciences of the Junior Division, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, The University of Mississippi, Oxford, MS, 37677, USA.
| |
Collapse
|
16
|
Chen L, Thapaliya G, Papantoni A, Benson L, Carnell S. Neural correlates of appetite in adolescents. Appetite 2023; 191:107076. [PMID: 37806450 PMCID: PMC10997743 DOI: 10.1016/j.appet.2023.107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Appetitive characteristics are associated with child adiposity, but their biological underpinnings are unclear. We sought to investigate the neural correlates of psychometric and behavioral measures of appetitive characteristics in youth. Adolescents (14-18y; 39F, 37M) varying in familial obesity risk and body weight (20% with overweight, 24% with obesity) viewed pictures of high energy-density (ED) foods, low-ED foods and non-foods during fMRI scanning on two separate days. On one day participants consumed a 474 ml preload of water (0 kcal, fasted) and on another (counter-balanced) 474 ml milkshake (480 kcal, fed), before scanning. A multi-item ad libitum meal (ALM) followed scanning. Parents completed Child Eating Behavior Questionnaire (CEBQ) sub-scales assessing food approach and food self-regulation. Caloric compensation was calculated as the percentage of preload intake compensated for by down-regulation of ALM intake in the fed vs. fasted condition. Analyses correcting for multiple comparisons demonstrated that, for the fasted condition, higher CEBQ Food Responsiveness scores were associated with greater activation to high-ED (vs. low-ED) foods in regions implicated in food reward (insula, rolandic operculum, putamen). In addition, higher caloric compensation was associated with greater fed vs. fasted activations in response to foods (vs. non-foods) in thalamus and supramarginal gyrus. Uncorrected analyses provided further support for associations of different measures of appetitive characteristics with brain responses to food cues in each condition. Measures of appetitive characteristics demonstrated overlapping and distinct associations with patterns of brain activation elicited by food cues in fasted and fed states. Understanding the neural basis of appetitive characteristics could aid development of biobehaviorally-informed obesity interventions.
Collapse
Affiliation(s)
- L Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - G Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - A Papantoni
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - L Benson
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - S Carnell
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
17
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Dera AM, Shen T, Thackray AE, Hinton EC, King JA, James L, Morgan PS, Rush N, Miyashita M, Batterham RL, Stensel DJ. The influence of physical activity on neural responses to visual food cues in humans: A systematic review of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2023; 152:105247. [PMID: 37236384 DOI: 10.1016/j.neubiorev.2023.105247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
This systematic review examined whether neural responses to visual food-cues measured by functional magnetic resonance imaging (fMRI) are influenced by physical activity. Seven databases were searched up to February 2023 for human studies evaluating visual food-cue reactivity using fMRI alongside an assessment of habitual physical activity or structured exercise exposure. Eight studies (1 exercise training, 4 acute crossover, 3 cross-sectional) were included in a qualitative synthesis. Structured acute and chronic exercise appear to lower food-cue reactivity in several brain regions, including the insula, hippocampus, orbitofrontal cortex (OFC), postcentral gyrus and putamen, particularly when viewing high-energy-density food cues. Exercise, at least acutely, may enhance appeal of low-energy-density food-cues. Cross-sectional studies show higher self-reported physical activity is associated with lower reactivity to food-cues particularly of high-energy-density in the insula, OFC, postcentral gyrus and precuneus. This review shows that physical activity may influence brain food-cue reactivity in motivational, emotional, and reward-related processing regions, possibly indicative of a hedonic appetite-suppressing effect. Conclusions should be drawn cautiously given considerable methodological variability exists across limited evidence.
Collapse
Affiliation(s)
- Abdulrahman M Dera
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; College of Sport Sciences, Jeddah University, Saudi Arabia; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Tonghui Shen
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Elanor C Hinton
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Centre Diet and Physical Activity Theme, University of Bristol, UK; Oxford Medical Products Limited, Witney Business and Innovation Centre, Witney, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Lewis James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Paul S Morgan
- Radiological Sciences, School of Medicine, University of Nottingham, UK; National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK
| | - Nathan Rush
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Masashi Miyashita
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong
| | - Rachel L Batterham
- Department of Medicine, Centre for Obesity Research, University College London, UK; National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
19
|
Richter M, Widera S, Malz F, Goltermann J, Steinmann L, Kraus A, Enneking V, Meinert S, Repple J, Redlich R, Leehr EJ, Grotegerd D, Dohm K, Kugel H, Bauer J, Arolt V, Dannlowski U, Opel N. Higher body weight-dependent neural activation during reward processing. Brain Imaging Behav 2023; 17:414-424. [PMID: 37012575 PMCID: PMC10435630 DOI: 10.1007/s11682-023-00769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range.
Collapse
Affiliation(s)
- Maike Richter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Sophia Widera
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Franziska Malz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lavinia Steinmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, Martin-Luther University of Halle, Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
20
|
Shearrer GE. The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations. Brain Sci 2023; 13:1086. [PMID: 37509016 PMCID: PMC10377615 DOI: 10.3390/brainsci13071086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Depression, type 2 diabetes (T2D), and obesity are comorbid, and prevention and treatment of all three diseases are needed. We hypothesized an inverse relationship between the connectivity of the cingulo-opercular task control network with the somatosensory mouth network and the interaction between HbA1c and depression. Three-hundred and twenty-five participants (BMI: 26.11 ± 0.29; Achenbach adult self-report (ASR) DSM depressive problems T-score (depression): 54.60 ± 6.77; Age: 28.26 ± 3.90 y; adult self-report anxiety and depression scale (anxiety and depression): 54.69 ± 7.27; HbA1c: 5.26 ± 0.29; 68% white) were sampled from the Human Connectome Project 1200 subjects PTN release. Inclusion criteria were: four (15 min) resting state fMRI scans; BMI; hemoglobin A1c (HbA1c); and complete adult self-report data. The following models were run to assess the connectivity between 15 independent fMRI components: the interaction of depression with HbA1c; anxiety and depression with HbA1c; depression with BMI; and anxiety and depression with BMI. All models were corrected for a reported number of depressive symptoms, head motion in the scanner, age, and race. Functional connectivity was modeled in FSLNets. Corrected significance was set at pFWE < 0.05. The interaction HbA1c and anxiety and depression was positively related to the connectivity of the cerebellum with the visual network (t = 3.76, pFWE = 0.008), frontoparietal network (t = 3.45, pFWE = 0.02), and somatosensory mouth network (t = 4.29, pFWE = 0.0004). Although our hypotheses were not supported, similar increases in cerebellar connectivity are seen in patients with T2D and overall suggest that the increased cerebellar connectivity may be compensatory for an increasingly poor glycemic control.
Collapse
Affiliation(s)
- Grace E Shearrer
- Department of Family and Consumer Sciences, Neuroscience Program, School of Computing, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82070, USA
| |
Collapse
|
21
|
Liu X, Turel O, Xiao Z, Lv C, He Q. Neural differences of food-specific inhibitory control in people with healthy vs higher BMI. Appetite 2023; 188:106759. [PMID: 37390598 DOI: 10.1016/j.appet.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Consistent with the idea that deficits in inhibition limit resistance to tempting, tasty, high-calorie foods, and might result in a higher BMI, we test whether people with higher BMIs (BMI >25 kg/m2) present inefficient inhibitory control over food-related responses. To unpack this association, we also examine individual differences in the neural mechanisms of food inhibitory control in healthy vs higher BMI individuals. We test these aspects with a sample of 109 participants (49 with higher BMI and 60 with healthy BMI) and the food stop-signal task, which was used to examine individuals' inhibitory control. Results demonstrated that people with higher BMI had significantly poorer food inhibitory control than healthy BMI individuals. fMRI results showed that, in both Go (Go_food vs Go_nature) and Stop conditions (Stop_food vs Stop_nature), compared to healthy BMI individuals, individuals with higher BMI had lower activation in the superior frontal gyrus, precuneus, precentral gyrus, and supramarginal gyrus in the food stimulus condition. Moreover, ROI analysis results showed that under the Stop_food condition, the activation in the inferior frontal gyrus in the higher BMI group was significantly negatively correlated with inhibitory control abilities. These results suggest that people with a higher BMI have limited ability to inhibit food impulsions, and that the prefrontal regions and parietal cortex may contribute to the progression of inhibitory control limitations in relation to food.
Collapse
Affiliation(s)
- Xing Liu
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Ofir Turel
- Computing Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Zhibing Xiao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Chenyu Lv
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China.
| |
Collapse
|
22
|
Thackray AE, Hinton EC, Alanazi TM, Dera AM, Fujihara K, Hamilton-Shield JP, King JA, Lithander FE, Miyashita M, Thompson J, Morgan PS, Davies MJ, Stensel DJ. Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging. Hum Brain Mapp 2023; 44:3815-3832. [PMID: 37145965 DOI: 10.1002/hbm.26314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023] Open
Abstract
Acute exercise suppresses appetite and alters food-cue reactivity, but the extent exercise-induced changes in cerebral blood flow (CBF) influences the blood-oxygen-level-dependent (BOLD) signal during appetite-related paradigms is not known. This study examined the impact of acute running on visual food-cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2 ) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five-minute pseudo-continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD-fMRI was acquired during a food-cue reactivity task before and 28 min after exercise/rest. Food-cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time-by-trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate-to-large reductions in subjective appetite ratings (Cohen's d = 0.53-0.84; p ≤ .024) and increased food-cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise-induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food-cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF.
Collapse
Affiliation(s)
- Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Elanor C Hinton
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
| | - Turki M Alanazi
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia
| | - Abdulrahman M Dera
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- College of Sport Sciences, Jeddah University, Saudi Arabia
| | - Kyoko Fujihara
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Julian P Hamilton-Shield
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Fiona E Lithander
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, Bristol, UK
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Julie Thompson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Paul S Morgan
- Radiological Sciences, School of Medicine, University of Nottingham, UK
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK
| | - Melanie J Davies
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
23
|
Pearce AL, Fuchs BA, Keller KL. The role of reinforcement learning and value-based decision-making frameworks in understanding food choice and eating behaviors. Front Nutr 2022; 9:1021868. [PMID: 36483928 PMCID: PMC9722736 DOI: 10.3389/fnut.2022.1021868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The obesogenic food environment includes easy access to highly-palatable, energy-dense, "ultra-processed" foods that are heavily marketed to consumers; therefore, it is critical to understand the neurocognitive processes the underlie overeating in response to environmental food-cues (e.g., food images, food branding/advertisements). Eating habits are learned through reinforcement, which is the process through which environmental food cues become valued and influence behavior. This process is supported by multiple behavioral control systems (e.g., Pavlovian, Habitual, Goal-Directed). Therefore, using neurocognitive frameworks for reinforcement learning and value-based decision-making can improve our understanding of food-choice and eating behaviors. Specifically, the role of reinforcement learning in eating behaviors was considered using the frameworks of (1) Sign-versus Goal-Tracking Phenotypes; (2) Model-Free versus Model-Based; and (3) the Utility or Value-Based Model. The sign-and goal-tracking phenotypes may contribute a mechanistic insight on the role of food-cue incentive salience in two prevailing models of overconsumption-the Extended Behavioral Susceptibility Theory and the Reactivity to Embedded Food Cues in Advertising Model. Similarly, the model-free versus model-based framework may contribute insight to the Extended Behavioral Susceptibility Theory and the Healthy Food Promotion Model. Finally, the value-based model provides a framework for understanding how all three learning systems are integrated to influence food choice. Together, these frameworks can provide mechanistic insight to existing models of food choice and overconsumption and may contribute to the development of future prevention and treatment efforts.
Collapse
Affiliation(s)
- Alaina L. Pearce
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Bari A. Fuchs
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kathleen L. Keller
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Scholz C, Chan HY, Poldrack RA, de Ridder DTD, Smidts A, van der Laan LN. Can we have a second helping? A preregistered direct replication study on the neurobiological mechanisms underlying self-control. Hum Brain Mapp 2022; 43:4995-5016. [PMID: 36082693 PMCID: PMC9582371 DOI: 10.1002/hbm.26065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Self‐control is of vital importance for human wellbeing. Hare et al. (2009) were among the first to provide empirical evidence on the neural correlates of self‐control. This seminal study profoundly impacted theory and empirical work across multiple fields. To solidify the empirical evidence supporting self‐control theory, we conducted a preregistered replication of this work. Further, we tested the robustness of the findings across analytic strategies. Participants underwent functional magnetic resonance imaging while rating 50 food items on healthiness and tastiness and making choices about food consumption. We closely replicated the original analysis pipeline and supplemented it with additional exploratory analyses to follow‐up on unexpected findings and to test the sensitivity of results to key analytical choices. Our replication data provide support for the notion that decisions are associated with a value signal in ventromedial prefrontal cortex (vmPFC), which integrates relevant choice attributes to inform a final decision. We found that vmPFC activity was correlated with goal values regardless of the amount of self‐control and it correlated with both taste and health in self‐controllers but only taste in non‐self‐controllers. We did not find strong support for the hypothesized role of left dorsolateral prefrontal cortex (dlPFC) in self‐control. The absence of statistically significant group differences in dlPFC activity during successful self‐control in our sample contrasts with the notion that dlPFC involvement is required in order to effectively integrate longer‐term goals into subjective value judgments. Exploratory analyses highlight the sensitivity of results (in terms of effect size) to the analytical strategy, for instance, concerning the approach to region‐of‐interest analysis.
Collapse
Affiliation(s)
- Christin Scholz
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hang-Yee Chan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Russell A Poldrack
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Denise T D de Ridder
- Department of Social, Health and Organisational Psychology, Utrecht University, Utrecht, The Netherlands
| | - Ale Smidts
- Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
25
|
Liu X, Liu Y, Song S, Xiang G, Du X, Li Q, Xiao M, Ling Y, Chen H. "Free won't" of food in overweight and normal-weight adults: Comparison of neurocognitive correlates of intentional and reactive inhibitions. Neuropsychologia 2022; 174:108351. [PMID: 35995241 DOI: 10.1016/j.neuropsychologia.2022.108351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Food-related inhibition plays a critical role in the manifestation of overweight. Previous research has focused exclusively on stimulus-driven (reactive) inhibition, which is different from intentional inhibition that refers to an internally generated decision to "stop". This study investigated the food-related neurophysiological correlates of intentional and reactive inhibitions in overweight and normal-weight adults. We compared 35 overweight participants (OWs) and 34 normal-weight participants (NWs) on performance and electroencephalography-based measures during a food-related go/no-go/choose task. In this task, participants made reactive responses to an instructed go/no-go target or made intentional choices whether to execute or inhibit a keypress when presented with a free-choice target. Our results mainly showed, 1) for group-difference, N2a amplitudes of OWs were less negative than that of NWs in the intentional trials; 2) for source difference, N2a amplitudes were less negative in reactive condition than in intentional condition uniquely in OWs. Moreover, comparison across intentional responses revealed that P2 amplitudes in no-go trials were lower than in go trials. Additionally, a greater body mass index correlated with lower intentional no-go-P2 and reactive go/no-go-P2 amplitudes. These findings suggest that overweight is associated with deficits in food-related intentional inhibition, which is segregated from reactive inhibition. The individual differences in premotor inhibition during free-choice situations might provide an explanation for overeating behaviors in overweight adults' daily life. Further, our results refine the ERP marker of intentional inhibition from N2 to N2a, which could be an essential neural mechanism underlying the "free won't" of food in OWs.
Collapse
Affiliation(s)
- Xinyuan Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| | - Shiqing Song
- Faculty of Psychology, Shaanxi Normal University, Xi'an, 710062, China.
| | - Guangcan Xiang
- Tian Jiabing College of Education, China Three Gorges University, Yichang, 443002, China.
| | - Xiaoli Du
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| | - Qingqing Li
- School of Psychology, Central China Normal University, Wuhan, 430079, China.
| | - Mingyue Xiao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| | - Ying Ling
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
26
|
Xinyuan L, Ximei C, Qingqing L, Guangcan X, Wei L, Mingyue X, Xiaoli D, Shiqing S, Yong L, Hong C. Altered resting-state functional connectivity of medial frontal cortex in overweight individuals: Link to food-specific intentional inhibition and weight gain. Behav Brain Res 2022; 433:114003. [PMID: 35811002 DOI: 10.1016/j.bbr.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Numerous findings from functional neuroimaging research suggest that overweight may be associated with alterations in reactive inhibition. However, there is a dearth of research investigating the functional connectivity that mediates intentional inhibition in overweight individuals. To explore this issue, 55 overweight and 45 normal-weight adults completed an assessment consisting of a resting-state functional magnetic resonance imaging scan, a behavioural task measuring food-specific intentional inhibition, and a 1-year longitudinal measurement of BMI change. A seed-based approach was employed to examine the group-difference of the resting-state functional connectivity (rsFC) of the medial frontal cortex (MFC) (dorsal fronto-medial cortex [dFMC], pre-supplementary motor area, and premotor cortex) regions involved in intentional inhibition. Compared with normal-weight adults, the overweight individuals exhibited higher rsFC between the MFC seeds and (i) cerebellum, (ii) postcentral gyrus, (iii) middle temporal gyrus, and (iv) posterior cingulate cortex, while lower rsFC strength were observed between MFC seeds and (i) putamen and (ii) insula. The overweight individuals with higher dFMC-cerebellum rsFC strength showed poorer performance in food-specific intentional inhibition and gained more weight a year later than those of normal-weight participants. Results suggested that altered functional connections between MFC and regions associated with reward and maladaptive eating may be key neural mechanisms of food-specific intentional inhibition in overweight status. Therefore, individuals are encouraged to make informed decisions about their health and reduce their consumption of obesogenic foods from the perspective of intentional inhibition.
Collapse
Affiliation(s)
- Liu Xinyuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Ximei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Qingqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiang Guangcan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiao Mingyue
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Du Xiaoli
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Song Shiqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Liu Yong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Hong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
27
|
Wu J, Xiao W, Yip J, Peng L, Zheng K, Takyi Bentil O, Ren Z. Effects of Exercise on Neural Changes in Inhibitory Control: An ALE Meta-Analysis of fMRI Studies. Front Hum Neurosci 2022; 16:891095. [PMID: 35814955 PMCID: PMC9265250 DOI: 10.3389/fnhum.2022.891095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
It is widely known that exercise improves inhibitory control; however, the mechanisms behind the cognitive improvement remain unclear. This study analyzes the extant literature on the neuronal effects of exercise on inhibitory control functions. We searched four online databases (Pubmed, Scopus, PsycINFO, and Web of Science) for relevant peer-reviewed studies to identify eligible studies published before September 1, 2021. Among the 4,090 candidate studies identified, 14 meet the inclusion criteria, and the results of 397 participants in these 14 studies are subsequently analyzed. We quantify the neural effects on the entire brain by using GingerALE software and identify 10 clusters of exercise-induced neuronal with either increases/decreases in the superior temporal gyrus (BA 22), precuneus (BA 7), superior frontal gyrus (BA 10), cuneus (BA 19), precuneus (BA 19), caudate, posterior cingulate (BA 19), middle temporal gyrus (B 37), parahippocampal gyrus (BA 30), precentral gyrus (BA 6). Meta-analytic coactivation map (MACM) showed that multiple functional networks overlap with brain regions with activation likelihood estimation (ALE) results. We propose the effect of exercise on neural activity is related to inhibitory control in the extended frontoparietal, default mode network (DMN), visual network, and other pathways. These results provide preliminary evidence of the neural effects of exercise on inhibitory control.
Collapse
Affiliation(s)
- Jinlong Wu
- School of Physical Education, Shenzhen University, Shenzhen, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen Xiao
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Joanne Yip
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Peng
- College of Physical Education, Southwest University, Chongqing, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Obed Takyi Bentil
- Civil and Environmental Engineering Department, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zhanbing Ren
- School of Physical Education, Shenzhen University, Shenzhen, China
- *Correspondence: Zhanbing Ren
| |
Collapse
|
28
|
Kennedy JT, Harms MP, Korucuoglu O, Astafiev SV, Barch DM, Thompson WK, Bjork JM, Anokhin AP. Reliability and stability challenges in ABCD task fMRI data. Neuroimage 2022; 252:119046. [PMID: 35245674 PMCID: PMC9017319 DOI: 10.1016/j.neuroimage.2022.119046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Trait stability of measures is an essential requirement for individual differences research. Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, such as attempts to relate task related brain activation to individual differences in behavior and psychopathology. However, recent research using adult samples has questioned the trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait stability of task fMRI in children. Here, we examined within-session reliability and long-term stability of individual differences in task-fMRI measures using fMRI measures of brain activation provided by the adolescent brain cognitive development (ABCD) Study Release v4.0 as an individual's average regional activity, using its tasks focused on reward processing, response inhibition, and working memory. We also evaluated the effects of factors potentially affecting reliability and stability. Reliability and stability (quantified as the ratio of non-scanner related stable variance to all variances) was poor in virtually all brain regions, with an average value of 0.088 and 0.072 for short term (within-session) reliability and long-term (between-session) stability, respectively, in regions of interest (ROIs) historically-recruited by the tasks. Only one reliability or stability value in ROIs exceeded the 'poor' cut-off of 0.4, and in fact rarely exceeded 0.2 (only 4.9%). Motion had a pronounced effect on estimated reliability/stability, with the lowest motion quartile of participants having a mean reliability/stability 2.5 times higher (albeit still 'poor') than the highest motion quartile. Poor reliability and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, consequently, statistical power for the detection of brain-behavior associations. This essential issue urgently needs to be addressed through optimization of task design, scanning parameters, data acquisition protocols, preprocessing pipelines, and data denoising methods.
Collapse
Affiliation(s)
- James T Kennedy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Serguei V Astafiev
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Wesley K Thompson
- Division of Biostatistics and Department of Radiology, Population Neuroscience and Genetics Lab, University of California, San Diego, United States
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, United States
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
29
|
Measuring short-term eating behaviour and desire to eat: Validation of the child eating behaviour questionnaire and a computerized 'desire to eat' computerized questionnaire. Appetite 2021; 167:105661. [PMID: 34437924 DOI: 10.1016/j.appet.2021.105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/18/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
The Child Eating Behaviour Questionnaire (CEBQ) is designed to measure 'usual' eating behaviour, with no time period attached, thus may not be suitable for assessing the effectiveness of short-term experimental studies. The aim of this study was to validate i) the CEBQ adapted to measure 'past week' rather than 'usual' eating behaviour, and ii) a computerized questionnaire assessing desire to eat core and non-core foods, against an objective measure of eating behaviour and food intake (eating in the absence of hunger (EAH) experiment). Children (n = 103) aged 8-12 years completed the desire to eat questionnaire followed by the EAH experiment while primary caregivers completed the adapted CEBQ. Results from the CEBQ showed that children with greater 'satiety responsiveness' (1-point higher) consumed less energy (-342 kJ; 95% CI -574, -110) whereas those with greater 'enjoyment of food' scale consumed more energy (380 kJ; 95% CI 124, 636) during the ad-libitum phase of the EAH experiment. Higher scores for slowness in eating (-705 kJ; 95% CI -1157, -254), emotional undereating (-590 kJ; 95% CI -1074, -106) and food fussiness (-629 kJ; 95% CI -1103, -155) were associated with lower total energy intake. Children who expressed greater desire to eat non-core foods consumed more energy in total (275 kJ; 95% CI 87, 463). Overall, this adapted CEBQ appears valid for measuring several short-term eating behaviours in children. The desire to eat questionnaire may be useful for identifying short-term susceptibility to overeating, however further investigation into how ratings of desire relate to the intake of highly palatable, energy dense foods is warranted.
Collapse
|
30
|
Yang Y, Wu Q, Morys F. Brain Responses to High-Calorie Visual Food Cues in Individuals with Normal-Weight or Obesity: An Activation Likelihood Estimation Meta-Analysis. Brain Sci 2021; 11:brainsci11121587. [PMID: 34942889 PMCID: PMC8699077 DOI: 10.3390/brainsci11121587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
Overconsumption of high-calorie or unhealthy foods commonly leads to weight gain. Understanding people’s neural responses to high-calorie food cues might help to develop better interventions for preventing or reducing overeating and weight gain. In this review, we conducted a coordinate-based meta-analysis of functional magnetic resonance imaging studies of viewing high-calorie food cues in both normal-weight people and people with obesity. Electronic databases were searched for relevant articles, retrieving 59 eligible studies containing 2410 unique participants. The results of an activation likelihood estimation indicate large clusters in a range of structures, including the orbitofrontal cortex (OFC), amygdala, insula/frontal operculum, culmen, as well as the middle occipital gyrus, lingual gyrus, and fusiform gyrus. Conjunction analysis suggested that both normal-weight people and people with obesity activated OFC, supporting that the two groups share common neural substrates of reward processing when viewing high-calorie food cues. The contrast analyses did not show significant activations when comparing obesity with normal-weight. Together, these results provide new important evidence for the neural mechanism underlying high-calorie food cues processing, and new insights into common and distinct brain activations of viewing high-calorie food cues between people with obesity and normal-weight people.
Collapse
Affiliation(s)
- Yingkai Yang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China
- Correspondence: ; Tel.: +86-13164407461
| | - Qian Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Research Center of Mental Health Education, Southwest University, Chongqing 400715, China;
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
| |
Collapse
|
31
|
Zhang W, Li G, Manza P, Hu Y, Wang J, Lv G, He Y, von Deneen KM, Yu J, Han Y, Cui G, Volkow ND, Nie Y, Ji G, Wang GJ, Zhang Y. Functional Abnormality of the Executive Control Network in Individuals With Obesity During Delay Discounting. Cereb Cortex 2021; 32:2013-2021. [PMID: 34649270 DOI: 10.1093/cercor/bhab333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/14/2023] Open
Abstract
Individuals with obesity (OB) prefer immediate rewards of food intake over the delayed reward of healthy well-being achieved through diet management and physical activity, compared with normal-weight controls (NW). This may reflect heightened impulsivity, an important factor contributing to the development and maintenance of obesity. However, the neural mechanisms underlying the greater impulsivity in OB remain unclear. Therefore, the current study employed functional magnetic resonance imaging with a delay discounting (DD) task to examine the association between impulsive choice and altered neural mechanisms in OB. During decision-making in the DD task, OB compared with NW had greater activation in the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex, which was associated with greater discounting rate and weaker cognitive control as measured with the Three-Factor Eating Questionnaire (TFEQ). In addition, the association between DLPFC activation and cognitive control (TFEQ) was mediated by discounting rate. Psychophysiological interaction analysis showed decreased connectivity of DLPFC-inferior parietal cortex (within executive control network [ECN]) and angular gyrus-caudate (ECN-reward) in OB relative to NW. These findings reveal that the aberrant function and connectivity in core regions of ECN and striatal brain reward regions underpin the greater impulsivity in OB and contribute to abnormal eating behaviors.
Collapse
Affiliation(s)
- Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
32
|
Heinrichs HS, Beyer F, Medawar E, Prehn K, Ordemann J, Flöel A, Witte AV. Effects of bariatric surgery on functional connectivity of the reward and default mode network: A pre-registered analysis. Hum Brain Mapp 2021; 42:5357-5373. [PMID: 34432350 PMCID: PMC8519880 DOI: 10.1002/hbm.25624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity imposes serious health risks and involves alterations in resting‐state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre‐registered study, we aimed to determine the effects of bariatric surgery on major resting‐state brain networks (reward and default mode network) in a longitudinal controlled design. Thirty‐three bariatric surgery patients and 15 obese waiting‐list control patients underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre‐registered whole‐brain time‐by‐group interaction analysis, and a time‐by‐group interaction analysis on within‐network connectivity. In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity of the reward network and the default mode network (FWE‐corrected p > .05), neither whole‐brain nor within‐network. In exploratory analyses, surgery‐related BMI decrease (FWE‐corrected p = .041) and higher average head motion (FWE‐corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre‐registered well‐controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting‐state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within‐scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.
Collapse
Affiliation(s)
- Hannah S Heinrichs
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kristin Prehn
- Department of Neurology & NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany.,Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Jürgen Ordemann
- Center for Bariatric and Metabolic Surgery, Charité University Medicine, Berlin, Germany.,Center for Bariatric and Metabolic Surgery, Vivantes Clinic Spandau, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany.,Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
33
|
Wever MCM, van Meer F, Charbonnier L, Crabtree DR, Buosi W, Giannopoulou A, Androutsos O, Johnstone AM, Manios Y, Meek CL, Holst JJ, Smeets PAM. Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. Neuroimage 2021; 240:118374. [PMID: 34245869 DOI: 10.1016/j.neuroimage.2021.118374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Food cue exposure can trigger eating. Food cue reactivity (FCR) is a conditioned response to food cues and includes physiological responses and activation of reward-related brain areas. FCR can be affected by hunger and weight status. The appetite-regulating hormones ghrelin and leptin play a pivotal role in homeostatic as well as hedonic eating. We examined the association between ghrelin and leptin levels and neural FCR in the fasted and sated state and the association between meal-induced changes in ghrelin and neural FCR, and in how far these associations are related to BMI and HOMA-IR. Data from 109 participants from three European centers (age 50±18 y, BMI 27±5 kg/m2) who performed a food viewing task during fMRI after an overnight fast and after a standardized meal were analyzed. Blood samples were drawn prior to the viewing task in which high-caloric, low-caloric and non-food images were shown. Fasting ghrelin was positively associated with neural FCR in the inferior and superior occipital gyrus in the fasted state. This was partly attributable to BMI and HOMA-IR. These brain regions are involved in visual attention, suggesting that individuals with higher fasting ghrelin have heightened attention to food cues. Leptin was positively associated with high calorie FCR in the medial prefrontal cortex (PFC) in the fasted state and to neural FCR in the left supramarginal gyrus in the fasted versus sated state, when correcting for BMI and HOMA-IR, respectively. This PFC region is involved in assessing anticipated reward value, suggesting that for individuals with higher leptin levels high-caloric foods are more salient than low-caloric foods, but foods in general are not more salient than non-foods. There were no associations between ghrelin and leptin and neural FCR in the sated state, nor between meal-induced changes in ghrelin and neural FCR. In conclusion, we show modest associations between ghrelin and leptin and neural FCR in a relatively large sample of European adults with a broad age and BMI range. Our findings indicate that people with higher leptin levels for their weight status and people with higher ghrelin levels may be more attracted to high caloric foods when hungry. The results of the present study form a foundation for future studies to test whether food intake and (changes in) weight status can be predicted by the association between (mainly fasting) ghrelin and leptin levels and neural FCR.
Collapse
Affiliation(s)
- Mirjam C M Wever
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lisette Charbonnier
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Daniel R Crabtree
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland; Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness IV2 3JH, United Kingdom
| | - William Buosi
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland
| | - Angeliki Giannopoulou
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Odysseas Androutsos
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece; Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala 42132, Greece
| | | | - Yannis Manios
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Claire L Meek
- Department of Clinical Biochemistry, Cambridge University Hospitals, Cambridge, United Kingdom; Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Research Section, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul A M Smeets
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | | |
Collapse
|
34
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|