1
|
Wang X, Zhang J, Zhong R, Chen G, Qi H, Cao Y, Lan Y. Consumption of oleogel alleviates lipid metabolism disorders in high-fat diet-fed rats by inhibiting LPS-induced gut microbiota-mediated inflammation. Food Funct 2025; 16:1130-1141. [PMID: 39831811 DOI: 10.1039/d4fo02974g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel). Results showed that compared to regular fat, pure sunflower oil and un-gelled sunflower oil consumption, oleogel consumption significantly suppressed weight gain and adipose tissue accumulation as well as serum and liver lipid accumulation. Microscopic observations further confirmed that oleogel intake alleviated white adipose tissue and liver steatosis caused by high-fat diet. Ex vivo biodistribution studies indicated an increased movement of TAGs toward the large intestine in the oleogel group. In the meantime, the dysregulation of gut microbiota was restored by reducing the Firmicutes/Bacteroidetes ratio and the relative abundance of Desulfobacterota and Proteobacteria. The oleogel group also exhibited reduced LPS levels in faeces, serum and liver. Furthermore, oleogel consumption alleviated inflammation, including decreased gene expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as suppressed protein expression of TLR4 and NF-κB in the liver. These results provide theoretical guidance for the regulation of oleogel properties and the potential application of oleogels as healthy fat replacers in high-fat diets.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, Guangdong, P.R. China
| | - Gangchao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Hongjin Qi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
2
|
Gao S, Wang J, Wei L, Luo C, Qian F, Bo L, Mao C. Trehalosemodulates OVRAS to improve oxidative stress and apoptosis in KGN cells and ovaries of PCOS mice. J Ovarian Res 2024; 17:11. [PMID: 38195648 PMCID: PMC10775634 DOI: 10.1186/s13048-023-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.
Collapse
Affiliation(s)
- Shasha Gao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Juan Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Lun Wei
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Chao Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Fei Qian
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Le Bo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
3
|
Ishikawa H, Nagashima R, Kuno Y, Sasaki H, Kohda C, Iyoda M. Effects of NKT Cells on Metabolic Disorders Caused by High-Fat Diet Using CD1d-Knockout Mice. Diabetes Metab Syndr Obes 2023; 16:2855-2864. [PMID: 37744699 PMCID: PMC10517681 DOI: 10.2147/dmso.s428190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose The purpose of this study was to investigate whether NKT cells play an important role in preventing or exacerbating diseases caused by high-fat diet (HFD) using CD1d-knockout (KO) mice which lack NKT cells. Methods Five-week-old male Balb/c (wild-type; WT) or CD1dKO mice were fed with control-diet (CTD) or HFD for 16 weeks. Results The present study revealed four main findings. First, CD1dKO mice were susceptible to obesity caused by HFD in comparison to WT mice. Second, clinical conditions of fatty liver caused by HFD were comparable between CD1dKO mice and WT mice. Third, HFD-fed WT mice showed high levels of serum biochemical markers, involved in lipid metabolisms, in comparison to WT mice fed a CTD. Notably, the serum concentrations of ALT, T-CHO, TG and HDL-C in CD1dKO mice fed a HFD were almost comparable to those of CD1dKO mice fed a CTD. Fourth, the expression of peroxisome proliferator-activated receptor (PPAR) γ, low-density lipoprotein receptor (LDLR), CD36 of epididymal adipose tissue enhanced and proprotein convertase subtilisin/kexin type (PCSK) 9 in serum decreased. Conclusion NKT cells were responsible for protection against HFD-induced obesity. However, CD1dKO mice were resistant to serum biochemical marker abnormalities after HFD feeding. One possible explanation is that the epididymal adipose tissue of CD1dKO mice could take up greater amounts of excess lipids in serum in comparison to WT mice.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| |
Collapse
|
4
|
Trehangelin E, a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. J Antibiot (Tokyo) 2022; 75:296-300. [PMID: 35322208 DOI: 10.1038/s41429-022-00519-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
Trehangelin E (1), a new bisacyl trehalose, was isolated from the culture extract of an actinomycete Polymorphospora sp. RD064483, along with three known congeners, trehangelins A, B, and D. Compound 1 is a new trehalose derivative acylated with (Z)-2-methyl-2-butenoic acid (angelic acid) at 3- and 6'-positions, as determined by NMR and MS analyses. Compound 1 promoted root elongation of germinated lettuce seeds by 30% at 1 μM and 90% at 10 μM compared to the nontreated seeds. Similar promoting activity of root elongation was also observed with trehangelins A and B at the same level.
Collapse
|
5
|
Zhang Q, Guo WL, Chen GM, Qian M, Han JZ, Lv XC, Chen LJ, Rao PF, Ai LZ, Ni L. Pediococcus acidilactici FZU106 alleviates high-fat diet-induced lipid metabolism disorder in association with the modulation of intestinal microbiota in hyperlipidemic rats. Curr Res Food Sci 2022; 5:775-788. [PMID: 35520273 PMCID: PMC9064835 DOI: 10.1016/j.crfs.2022.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics have been proved to have beneficial effects in improving hyperlipidemia. The purpose of the current research was to investigate the ameliorative effects of Pediococcus acidilactici FZU106, isolated from the traditional brewing of Hongqu rice wine, on lipid metabolism and intestinal microbiota in high-fat diet (HFD)-induced hyperlipidemic rats. Results showed that P. acidilactici FZU106 intervention obviously inhibited the abnormal increase of body weight, ameliorated serum and liver biochemical parameters related to lipid metabolism and oxidative stress. Histopathological evaluation also showed that P. acidilactici FZU106 could significantly reduce the excessive lipid accumulation in liver caused by HFD-feeding. Furthermore, P. acidilactici FZU106 intervention significantly increased the short-chain fatty acids (SCFAs) levels in HFD-fed rats, which was closely related to the changes of intestinal microbial composition and metabolism. Intestinal microbiota profiling by high-throughput sequencing demonstrated that P. acidilactici FZU106 intervention evidently increased the proportion of Butyricicoccus, Pediococcus, Rothia, Globicatella and [Eubacterium]_coprostanoligenes_group, and decreased the proportion of Corynebacterium_1, Psychrobacter, Oscillospira, Facklamia, Pseudogracilibacillus, Clostridium_innocuum_group, Enteractinococcus and Erysipelothrix in HFD-fed rats. Additionally, P. acidilactici FZU106 significantly regulated the mRNA levels of liver genes (including CD36, CYP7A1, SREBP-1c, BSEP, LDLr and HMGCR) involved in lipid metabolism and bile acid homeostasis. Therefore, these findings support the possibility that P. acidilactici FZU106 has the potential to reduce the disturbance of lipid metabolism by regulating intestinal microflora and liver gene expression profiles. Pediococcus acidilactici FZU106 protects against hyperlipidemia. Pediococcus acidilactici FZU106 regulates serum and liver lipid levels. Pediococcus acidilactici FZU106 regulates intestinal microbial composition. Pediococcus acidilactici FZU106 regulates lipid metabolism related genes.
Collapse
|
6
|
Cyanidin-3-O-galactoside from Aronia melanocarpa attenuates high-fat diet-induced obesity and inflammation via AMPK, STAT3, and NF-κB p65 signaling pathways in Sprague-Dawley rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|