1
|
Pascolini G, Scaglione GL, Chandramouli B, Castiglia D, Di Zenzo G, Didona B. Broadening the PHIP-Associated Neurodevelopmental Phenotype. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1395. [PMID: 39594970 PMCID: PMC11593145 DOI: 10.3390/children11111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Monoallelic damaging variants in PHIP (MIM*612870), encoding the Pleckstrin Homology Domain Interacting Protein, have been associated with a novel neurodevelopmental disorder, also termed Chung-Jansen syndrome (CHUJANS, MIM#617991). Most of the described individuals show developmental delay (DD)/intellectual disability (ID), obesity/overweight, and variable congenital anomalies, so the condition can be considered as an ID-overweight syndrome. CASE DESCRIPTION We evaluated a child presenting with DD/ID and a craniofacial phenotype reminiscent of a Pitt-Hopkins syndrome (PTHS)-like condition. We performed a clinical exome analysis on his biological sample, as well as an in silico prediction of the obtained data. At the same time, we interrogated the DeepGestalt technology powered by Face2Gene (F2G), using a frontal image of the proband, and clinically reviewed the earlier CHUJANS patients. In this child, we found a novel PHIP pathogenetic variant, which we corroborated through a protein modeling approach. The F2G platform supported the initial clinical hypothesis of a PTHS-like condition, while the clinical review highlighted the lack of the main frequent CHUJANS clinical features in this child. CONCLUSIONS The unusual clinical presentation of this novel patient resembles a PTHS-like condition. However, a novel variant in PHIP has been unexpectedly detected, expanding the phenotypic spectrum of CHUJANS. Notably, PTHS (MIM#610954), which is a different ID syndrome caused by heterozygous variants in TCF4 (MIM*610954), is not classically considered in the differential diagnosis of CHUJANS nor has been cited in the previous studies. This could support other complex diagnoses and invite further patients' descriptions.
Collapse
Affiliation(s)
- Giulia Pascolini
- Genetic Counselling Unit, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | | | - Balasubramanian Chandramouli
- Super Computing Applications and Innovation, Department High Performance Computing (HPC), CINECA, 40033 Bologna, Italy;
| | - Daniele Castiglia
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (D.C.); (G.D.Z.)
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (D.C.); (G.D.Z.)
| | - Biagio Didona
- Rare Diseases Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| |
Collapse
|
2
|
Loid P, Vuorela N, Aaltonen K, Kuittinen J, Mäkitie O. Novel Insights: A Novel PHIP Variant in a Family with Severe Early-Onset Obesity. Horm Res Paediatr 2024:1-8. [PMID: 39437749 DOI: 10.1159/000542205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Severe childhood obesity can be caused by pathogenic variants in several genes involved in monogenic and syndromic obesity. Recently, heterozygous variants in pleckstrin homology domain interacting protein (PHIP) have been identified in patients with obesity as part of Chung-Jansen syndrome. CASE PRESENTATION The index patient is a 5-year-old boy with severe obesity since 1 year of age, developmental delay, facial dysmorphism, and behavior problems. Whole-exome sequencing identified a novel missense variant in PHIP (c.3182C>A, p.Ala1061Glu) in the index patient. Further genetic testing in family members revealed segregation of the same PHIP variant in the brother and mother, who both presented with severe childhood obesity and developmental delay or learning difficulties. The PHIP missense variant was predicted pathogenic by multiple in silico tools and affects a highly conserved residue. CONCLUSION Early-onset obesity may be monogenic. Our finding expands the spectrum of disease-causing variants in PHIP and demonstrates variable intrafamilial clinical expressivity and severity. Screening for PHIP variants should be included in genetic testing in patients with severe early-onset obesity.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Nina Vuorela
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Kirsimari Aaltonen
- Department of Clinical Genetics, Tampere University Hospital, Tampere, Finland
- Duodecim Medical Publications Ltd, Helsinki, Finland
| | - Juha Kuittinen
- Department of Pediatric Neurology, Tampere University Hospital, Finland and University of Tampere, Tampere, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, Vasileiou G, Findeisen C, Kampmeier A, Kuechler A, Reis A, Decker E, Bergmann C, Platzer K, Tasic V, Kirschner KM, Shril S, Hildebrandt F, Chung WK, Halbritter J. Pathogenic PHIP Variants are Variably Associated With CAKUT. Kidney Int Rep 2024; 9:2484-2497. [PMID: 39156152 PMCID: PMC11328576 DOI: 10.1016/j.ekir.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Findeisen
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
6
|
Kampmeier A, Leitão E, Parenti I, Beygo J, Depienne C, Bramswig NC, Hsieh TC, Afenjar A, Beck-Wödl S, Grasshoff U, Haack TB, Bijlsma EK, Ruivenkamp C, Lausberg E, Elbracht M, Haanpää MK, Koillinen H, Heinrich U, Rost I, Jamra RA, Popp D, Koch-Hogrebe M, Rostasy K, López-González V, Sanchez-Soler MJ, Macedo C, Schmetz A, Steinborn C, Weidensee S, Lesmann H, Marbach F, Caro P, Schaaf CP, Krawitz P, Wieczorek D, Kaiser FJ, Kuechler A. PHIP-associated Chung-Jansen syndrome: Report of 23 new individuals. Front Cell Dev Biol 2023; 10:1020609. [PMID: 36726590 PMCID: PMC9886139 DOI: 10.3389/fcell.2022.1020609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
In 2016 and 2018, Chung, Jansen and others described a new syndrome caused by haploinsufficiency of PHIP (pleckstrin homology domain interacting protein, OMIM *612,870) and mainly characterized by developmental delay (DD), learning difficulties/intellectual disability (ID), behavioral abnormalities, facial dysmorphism and obesity (CHUJANS, OMIM #617991). So far, PHIP alterations appear to be a rare cause of DD/ID. "Omics" technologies such as exome sequencing or array analyses have led to the identification of distinct types of alterations of PHIP, including, truncating variants, missense substitutions, splice variants and large deletions encompassing portions of the gene or the entire gene as well as adjacent genomic regions. We collected clinical and genetic data of 23 individuals with PHIP-associated Chung-Jansen syndrome (CHUJANS) from all over Europe. Follow-up investigations (e.g. Sanger sequencing, qPCR or Fluorescence-in-situ-Hybridization) and segregation analysis showed either de novo occurrence or inheritance from an also (mildly) affected parent. In accordance with previously described patients, almost all individuals reported here show developmental delay (22/23), learning disability or ID (22/23), behavioral abnormalities (20/23), weight problems (13/23) and characteristic craniofacial features (i.e. large ears/earlobes, prominent eyebrows, anteverted nares and long philtrum (23/23)). To further investigate the facial gestalt of individuals with CHUJANS, we performed facial analysis using the GestaltMatcher approach. By this, we could establish that PHIP patients are indistinguishable based on the type of PHIP alteration (e.g. missense, loss-of-function, splice site) but show a significant difference to the average face of healthy individuals as well as to individuals with Prader-Willi syndrome (PWS, OMIM #176270) or with a CUL4B-alteration (Intellectual developmental disorder, X-linked, syndromic, Cabezas type, OMIM #300354). Our findings expand the mutational and clinical spectrum of CHUJANS. We discuss the molecular and clinical features in comparison to the published individuals. The fact that some variants were inherited from a mildly affected parent further illustrates the variability of the associated phenotype and outlines the importance of a thorough clinical evaluation combined with genetic analyses for accurate diagnosis and counselling.
Collapse
Affiliation(s)
- Antje Kampmeier
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany,*Correspondence: Antje Kampmeier, ; Alma Kuechler,
| | - Elsa Leitão
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ilaria Parenti
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tzung-Chien Hsieh
- Institut für Genomische Statistik und Bioinformatik, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexandra Afenjar
- Département de génétique et embryologie médicale, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, Hôpital Trousseau, APHP Sorbonne Université, Paris, France
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Eva Lausberg
- Institut für Humangenetik und Genommedizin, Uniklinik RWTH Aachen, Aachen, Germany
| | - Miriam Elbracht
- Institut für Humangenetik und Genommedizin, Uniklinik RWTH Aachen, Aachen, Germany
| | - Maria K Haanpää
- Clinical Genetics Unit, Turku University Hospital, Turku, Finland,Department of Genomics, Turku University Hospital, Turku, Finland
| | - Hannele Koillinen
- Clinical Genetics Unit, Turku University Hospital, Turku, Finland,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Uwe Heinrich
- Zentrum für Humangenetik und Laboratoriumsdiagnostik Dr. Klein Dr. Rost und Kollegen, Martinsried, Germany
| | - Imma Rost
- Zentrum für Humangenetik und Laboratoriumsdiagnostik Dr. Klein Dr. Rost und Kollegen, Martinsried, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Denny Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Margarete Koch-Hogrebe
- Vestische Kinder- und Jugendklinik Datteln, Abteilung für Neuropädiatrie, Datteln, Germany
| | - Kevin Rostasy
- Vestische Kinder- und Jugendklinik Datteln, Abteilung für Neuropädiatrie, Datteln, Germany
| | - Vanesa López-González
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain,Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - María José Sanchez-Soler
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Catarina Macedo
- Serviço de Genética, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar e Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Ariane Schmetz
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carmen Steinborn
- MVZ Mitteldeutscher Praxisverbund Humangenetik, Dresden, Germany
| | | | - Hellen Lesmann
- Institut für Humangenetik, Universitätsklinikum Bonn, Universität Bonn, Bonn, Germany
| | - Felix Marbach
- Institut für Humangenetik, Universitätsklinikum Heidelberg, Universität Heidelberg, Heidelberg, Germany
| | - Pilar Caro
- Institut für Humangenetik, Universitätsklinikum Heidelberg, Universität Heidelberg, Heidelberg, Germany
| | - Christian P. Schaaf
- Institut für Humangenetik, Universitätsklinikum Heidelberg, Universität Heidelberg, Heidelberg, Germany
| | - Peter Krawitz
- Institut für Genomische Statistik und Bioinformatik, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Center for Rare Diseases, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank J Kaiser
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany,Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Germany,Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Essen, Germany,*Correspondence: Antje Kampmeier, ; Alma Kuechler,
| |
Collapse
|
7
|
Kehinde TA, Bhatia A, Olarewaju B, Shoaib MZ, Mousa J, Osundiji MA. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet 2022; 65:104443. [DOI: 10.1016/j.ejmg.2022.104443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|