1
|
El Chemaly T, Athayde Neves C, Leuze C, Hargreaves B, H Blevins N. Stereoscopic calibration for augmented reality visualization in microscopic surgery. Int J Comput Assist Radiol Surg 2023; 18:2033-2041. [PMID: 37450175 DOI: 10.1007/s11548-023-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Middle and inner ear procedures target hearing loss, infections, and tumors of the temporal bone and lateral skull base. Despite the advances in surgical techniques, these procedures remain challenging due to limited haptic and visual feedback. Augmented reality (AR) may improve operative safety by allowing the 3D visualization of anatomical structures from preoperative computed tomography (CT) scans on real intraoperative microscope video feed. The purpose of this work was to develop a real-time CT-augmented stereo microscope system using camera calibration and electromagnetic (EM) tracking. METHODS A 3D printed and electromagnetically tracked calibration board was used to compute the intrinsic and extrinsic parameters of the surgical stereo microscope. These parameters were used to establish a transformation between the EM tracker coordinate system and the stereo microscope image space such that any tracked 3D point can be projected onto the left and right images of the microscope video stream. This allowed the augmentation of the microscope feed of a 3D printed temporal bone with its corresponding CT-derived virtual model. Finally, the calibration board was also used for evaluating the accuracy of the calibration. RESULTS We evaluated the accuracy of the system by calculating the registration error (RE) in 2D and 3D in a microsurgical laboratory setting. Our calibration workflow achieved a RE of 0.11 ± 0.06 mm in 2D and 0.98 ± 0.13 mm in 3D. In addition, we overlaid a 3D CT model on the microscope feed of a 3D resin printed model of a segmented temporal bone. The system exhibited small latency and good registration accuracy. CONCLUSION We present the calibration of an electromagnetically tracked surgical stereo microscope for augmented reality visualization. The calibration method achieved accuracy within a range suitable for otologic procedures. The AR process introduces enhanced visualization of the surgical field while allowing depth perception.
Collapse
Affiliation(s)
- Trishia El Chemaly
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA.
| | - Caio Athayde Neves
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, USA
- Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Christoph Leuze
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Brian Hargreaves
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nikolas H Blevins
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Cannon PC, Ferguson JM, Pitt EB, Shrand JA, Setia SA, Nimmagadda N, Barth EJ, Kavoussi NL, Galloway RL, Herrell SD, Webster RJ. A Safe Framework for Quantitative In Vivo Human Evaluation of Image Guidance. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:133-139. [PMID: 38487093 PMCID: PMC10939321 DOI: 10.1109/ojemb.2023.3271853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 03/17/2024] Open
Abstract
Goal: We present a new framework for in vivo image guidance evaluation and provide a case study on robotic partial nephrectomy. Methods: This framework (called the "bystander protocol") involves two surgeons, one who solely performs the therapeutic process without image guidance, and another who solely periodically collects data to evaluate image guidance. This isolates the evaluation from the therapy, so that in-development image guidance systems can be tested without risk of negatively impacting the standard of care. We provide a case study applying this protocol in clinical cases during robotic partial nephrectomy surgery. Results: The bystander protocol was performed successfully in 6 patient cases. We find average lesion centroid localization error with our IGS system to be 6.5 mm in vivo compared to our prior result of 3.0 mm in phantoms. Conclusions: The bystander protocol is a safe, effective method for testing in-development image guidance systems in human subjects.
Collapse
Affiliation(s)
| | | | | | | | | | - Naren Nimmagadda
- Vanderbilt University Medical CenterNashvilleTN37232USA
- The Johns Hopkins University School of MedicineBaltimoreMD21287USA
| | | | | | | | | | | |
Collapse
|
3
|
Yoo H, Sim T. Automated Machine Learning (AutoML)-based Surface Registration Methodology for Image-guided Surgical Navigation System. Med Phys 2022; 49:4845-4860. [PMID: 35543150 DOI: 10.1002/mp.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND While the surface registration technique has the advantage of being relatively safe and the operation time is short, it generally has the disadvantage of low accuracy. PURPOSE This research proposes automated machine learning (AutoML)-based surface registration to improve the accuracy of image-guided surgical navigation systems. METHODS The state-of-the-art surface registration concept is that first, using a neural network model, a new point-cloud that matches the facial information acquired by a passive probe of an optical tracking system (OTS) is extracted from the facial information obtained by computerized tomography (CT). Target registration error (TRE) representing the accuracy of surface registration is then calculated by applying the iterative closest point (ICP) algorithm to the newly extracted point-cloud and OTS information. In this process, the hyperparameters used in the neural network model and ICP algorithm are automatically optimized using Bayesian Optimization with Expected Improvement to yield improved registration accuracy. RESULTS Using the proposed surface registration methodology, the average TRE for the targets located in the sinus space and nasal cavity of the soft phantoms is (0.939 ± 0.375) mm, which shows 57.8 % improvement compared to the average TRE of (2.227 ± 0.193) mm calculated by the conventional surface registration method (p < 0.01). The performance of the proposed methodology is evaluated, and the average TREs computed by the proposed methodology and the conventional method are (0.767 ± 0.132) mm and (2.615 ± 0.378) mm, respectively. Additionally, for one healthy adult, the clinical applicability of the AutoML-based surface registration is also presented. CONCLUSION Our findings showed that the registration accuracy could be improved while maintaining the advantages of the surface registration technique. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hakje Yoo
- Korea University Research Institute for Medical Bigdata Science, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Taeyong Sim
- Department of Artificial Intelligence, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| |
Collapse
|
4
|
Virtual splint registration for electromagnetic and optical navigation in orbital and craniofacial surgery. Sci Rep 2021; 11:10406. [PMID: 34001966 PMCID: PMC8128880 DOI: 10.1038/s41598-021-89897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
In intra-operative navigation, a registration procedure is performed to register the patient's position to the pre-operative imaging data. The registration process is the main factor that determines accuracy of the navigation feedback. In this study, a novel registration protocol for craniofacial surgery is presented, that utilizes a virtual splint with marker points. The accuracy of the proposed method was evaluated by two observers in five human cadaver heads, for optical and electromagnetic navigation, and compared to maxillary bone-anchored fiducial registration (optical and electromagnetic) and surface-based registration (electromagnetic). The results showed minimal differences in accuracy compared to bone-anchored fiducials at the level of the infra-orbital rim. Both point-based techniques had lower error estimates at the infraorbital rim than surface-based registration, but surface-based registration had the lowest loss of accuracy over target distance. An advantage over existing point-based registration methods (bone-anchored fiducials, existing splint techniques) is that radiological imaging does not need to be repeated, since the need for physical fiducials to be present in the image volume is eradicated. Other advantages include reduction of invasiveness compared to bone-achnored fiducials and a possible reduction of human error in the registration process.
Collapse
|
5
|
Effect of marker position and size on the registration accuracy of HoloLens in a non-clinical setting with implications for high-precision surgical tasks. Int J Comput Assist Radiol Surg 2021; 16:955-966. [PMID: 33856643 PMCID: PMC8166698 DOI: 10.1007/s11548-021-02354-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/16/2021] [Indexed: 01/26/2023]
Abstract
Purpose Emerging holographic headsets can be used to register patient-specific virtual models obtained from medical scans with the patient’s body. Maximising accuracy of the virtual models’ inclination angle and position (ideally, ≤ 2° and ≤ 2 mm, respectively, as in currently approved navigation systems) is vital for this application to be useful. This study investigated the accuracy with which a holographic headset registers virtual models with real-world features based on the position and size of image markers. Methods HoloLens® and the image-pattern-recognition tool Vuforia Engine™ were used to overlay a 5-cm-radius virtual hexagon on a monitor’s surface in a predefined position. The headset’s camera detection of an image marker (displayed on the monitor) triggered the rendering of the virtual hexagon on the headset’s lenses. 4 × 4, 8 × 8 and 12 × 12 cm image markers displayed at nine different positions were used. In total, the position and dimensions of 114 virtual hexagons were measured on photographs captured by the headset’s camera. Results Some image marker positions and the smallest image marker (4 × 4 cm) led to larger errors in the perceived dimensions of the virtual models than other image marker positions and larger markers (8 × 8 and 12 × 12 cm). ≤ 2° and ≤ 2 mm errors were found in 70.7% and 76% of cases, respectively. Conclusion Errors obtained in a non-negligible percentage of cases are not acceptable for certain surgical tasks (e.g. the identification of correct trajectories of surgical instruments). Achieving sufficient accuracy with image marker sizes that meet surgical needs and regardless of image marker position remains a challenge. Supplementary Information The online version contains supplementary material available at 10.1007/s11548-021-02354-9.
Collapse
|
6
|
Sox2 knockdown in the neonatal retina causes cell fate to switch from amacrine to bipolar. Brain Res 2021; 1752:147265. [PMID: 33422527 DOI: 10.1016/j.brainres.2020.147265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
Transcription factor Sox2 is widely recognized for its critical roles in the nervous system, including the neural retina. Here, we aimed to reveal the function of Sox2 in the process of mouse postnatal development. After the suppression of Sox2 at P0, there was an increase number in bipolar cells but a decrease in amacrine cells. Inhibited Sox2 expression also led to decreased visual function. Furthermore, we found a distinctive type of retinal cells expressing the characteristic proteins of both bipolar cells and amacrine cells at P6, which may be an intermediate state in which amacrine cells were transforming into bipolar cells. Transcription factors associated with the development of bipolar cells and amacrine cells also support those changes. Our work indicated that inhibition of Sox2 could change cell fate by affecting transcription factors in the development of bipolar cells and amacrine cells, may provide new directions for the study and treatment of retinal genetic diseases and retinal dysplasia.
Collapse
|
7
|
Wang J, Liu H, Ke J, Hu L, Zhang S, Yang B, Sun S, Guo N, Ma F. Image-guided cochlear access by non-invasive registration: a cadaveric feasibility study. Sci Rep 2020; 10:18318. [PMID: 33110188 PMCID: PMC7591497 DOI: 10.1038/s41598-020-75530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Image-guided cochlear implant surgery is expected to reduce volume of mastoidectomy, accelerate recovery, and improve safety. The purpose of this study was to investigate the safety and effectiveness of image-guided cochlear implant surgery by a non-invasive registration method, in a cadaveric study. We developed a visual positioning frame that can utilize the maxillary dentition as a registration tool and completed the tunnels experiment on 5 cadaver specimens (8 cases in total). The accuracy of the entry point and the target point were 0.471 ± 0.276 mm and 0.671 ± 0.268 mm, respectively. The shortest distance from the margin of the tunnel to the facial nerve and the ossicular chain were 0.790 ± 0.709 mm and 1.960 ± 0.630 mm, respectively. All facial nerves, tympanic membranes, and ossicular chains were completely preserved. Using this approach, high accuracy was achieved in this preliminary study, suggesting that the non-invasive registration method can meet the accuracy requirements for cochlear implant surgery. Based on the above accuracy, we speculate that our method can also be applied to neurosurgery, orbitofacial surgery, lateral skull base surgery, and anterior skull base surgery with satisfactory accuracy.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongsheng Liu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jia Ke
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Hu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shaoxing Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Biao Yang
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shilong Sun
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Na Guo
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Furong Ma
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
8
|
Švaco M, Stiperski I, Dlaka D, Šuligoj F, Jerbić B, Chudy D, Raguž M. Stereotactic Neuro-Navigation Phantom Designs: A Systematic Review. Front Neurorobot 2020; 14:549603. [PMID: 33192433 PMCID: PMC7644893 DOI: 10.3389/fnbot.2020.549603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Diverse stereotactic neuro-navigation systems are used daily in neurosurgery and novel systems are continuously being developed. Prior to clinical implementation of new surgical tools, methods or instruments, in vitro experiments on phantoms should be conducted. A stereotactic neuro-navigation phantom denotes a rigid or deformable structure resembling the cranium with the intracranial area. The use of phantoms is essential for the testing of complete procedures and their workflows, as well as for the final validation of the application accuracy. The aim of this study is to provide a systematic review of stereotactic neuro-navigation phantom designs, to identify their most relevant features, and to identify methodologies for measuring the target point error, the entry point error, and the angular error (α). The literature on phantom designs used for evaluating the accuracy of stereotactic neuro-navigation systems, i.e., robotic navigation systems, stereotactic frames, frameless navigation systems, and aiming devices, was searched. Eligible articles among the articles written in English in the period 2000-2020 were identified through the electronic databases PubMed, IEEE, Web of Science, and Scopus. The majority of phantom designs presented in those articles provide a suitable methodology for measuring the target point error, while there is a lack of objective measurements of the entry point error and angular error. We identified the need for a universal phantom design, which would be compatible with most common imaging techniques (e.g., computed tomography and magnetic resonance imaging) and suitable for simultaneous measurement of the target point, entry point, and angular errors.
Collapse
Affiliation(s)
- Marko Švaco
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Ivan Stiperski
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Domagoj Dlaka
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Filip Šuligoj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Bojan Jerbić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Video-based augmented reality combining CT-scan and instrument position data to microscope view in middle ear surgery. Sci Rep 2020; 10:6767. [PMID: 32317726 PMCID: PMC7174368 DOI: 10.1038/s41598-020-63839-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/26/2020] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to develop and assess the performance of a video-based augmented reality system, combining preoperative computed tomography (CT) and real-time microscopic video, as the first crucial step to keyhole middle ear procedures through a tympanic membrane puncture. Six different artificial human temporal bones were included in this prospective study. Six stainless steel fiducial markers were glued on the periphery of the eardrum, and a high-resolution CT-scan of the temporal bone was obtained. Virtual endoscopy of the middle ear based on this CT-scan was conducted on Osirix software. Virtual endoscopy image was registered to the microscope-based video of the intact tympanic membrane based on fiducial markers and a homography transformation was applied during microscope movements. These movements were tracked using Speeded-Up Robust Features (SURF) method. Simultaneously, a micro-surgical instrument was identified and tracked using a Kalman filter. The 3D position of the instrument was extracted by solving a three-point perspective framework. For evaluation, the instrument was introduced through the tympanic membrane and ink droplets were injected on three middle ear structures. An average initial registration accuracy of 0.21 ± 0.10 mm (n = 3) was achieved with a slow propagation error during tracking (0.04 ± 0.07 mm). The estimated surgical instrument tip position error was 0.33 ± 0.22 mm. The target structures’ localization accuracy was 0.52 ± 0.15 mm. The submillimetric accuracy of our system without tracker is compatible with ear surgery.
Collapse
|
10
|
Schwam ZG, Kaul VZ, Cosetti MK, Wanna GB. Accuracy of a Modern Intraoperative Navigation System for Temporal Bone Surgery in a Cadaveric Model. Otolaryngol Head Neck Surg 2019; 161:842-845. [DOI: 10.1177/0194599819864292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To determine the accuracy of a modern navigation system in temporal bone surgery. While routine in other specialties, navigation has had limited use in the temporal bone due to issues of accuracy, perceived impracticality, and value. Study Design Prospective observational study. Setting Temporal bone laboratory. Subjects and Methods Eighteen cadaveric specimens were dissected after rigid fiducials were implanted and computed tomography scans were obtained. Target registration and target localization errors were then measured at various points. Results The mean overall target registration error was 0.48 ± 0.29 mm. The mean target localization error was 0.54 mm at the sinodural angle, 0.48 mm at the lateral semicircular canal, 0.55 mm at the round window, 0.39 mm at the oval window, and 0.52 mm at the second genu of the facial nerve. Conclusion A modern navigation system demonstrated submillimeter accuracy for all points of interest. Its use in clinical as well as training settings has yet to be fully elucidated.
Collapse
Affiliation(s)
- Zachary G. Schwam
- Department of Otolaryngology–Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivian Z. Kaul
- Department of Otolaryngology–Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maura K. Cosetti
- Department of Otolaryngology–Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Otolaryngology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
- Audiology, Hearing, and Balance Center, Mount Sinai Health System, New York, New York, USA
- Ear Institute, Mount Sinai Health System, New York, New York, USA
| | - George B. Wanna
- Department of Otolaryngology–Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Otolaryngology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
- Audiology, Hearing, and Balance Center, Mount Sinai Health System, New York, New York, USA
- Ear Institute, Mount Sinai Health System, New York, New York, USA
| |
Collapse
|
11
|
Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P. Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Rev Biomed Eng 2019; 13:212-232. [PMID: 31484133 DOI: 10.1109/rbme.2019.2939091] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optical and electromagnetic tracking systems represent the two main technologies integrated into commercially-available surgical navigators for computer-assisted image-guided surgery so far. Optical Tracking Systems (OTSs) work within the optical spectrum to track the position and orientation, i.e., pose of target surgical instruments. OTSs are characterized by high accuracy and robustness to environmental conditions. The main limitation of OTSs is the need of a direct line-of-sight between the optical markers and the camera sensor, rigidly fixed into the operating theatre. Electromagnetic Tracking Systems (EMTSs) use electromagnetic field generator to detect the pose of electromagnetic sensors. EMTSs do not require such a direct line-of-sight, however the presence of metal or ferromagnetic sources in the operating workspace can significantly affect the measurement accuracy. The aim of the proposed review is to provide a complete and detailed overview of optical and electromagnetic tracking systems, including working principles, source of error and validation protocols. Moreover, commercial and research-oriented solutions, as well as clinical applications, are described for both technologies. Finally, a critical comparative analysis of the state of the art which highlights the potentialities and the limitations of each tracking system for a medical use is provided.
Collapse
|
12
|
Voultsos P, Casini M, Ricci G, Tambone V, Midolo E, Spagnolo AG. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:65-71. [PMID: 28374874 PMCID: PMC5384313 DOI: 10.14639/0392-100x-1292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022]
Abstract
The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed.
Collapse
Affiliation(s)
- P Voultsos
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - M Casini
- Institute of Bioethics & Medical Humanities, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ricci
- School of Law, University of Camerino, Italy
| | - V Tambone
- Institute of Philosophy of Scientific and Technological Activity, Campus Bio-Medico University of Rome, Italy
| | - E Midolo
- Institute of Bioethics & Medical Humanities, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A G Spagnolo
- Institute of Bioethics & Medical Humanities, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Matsushima K, Komune N, Matsuo S, Kohno M. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach. World Neurosurg 2017; 103:620-630. [DOI: 10.1016/j.wneu.2017.04.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022]
|
14
|
Komune N, Matsushima K, Matsuo S, Safavi-Abbasi S, Matsumoto N, Rhoton AL. The accuracy of an electromagnetic navigation system in lateral skull base approaches. Laryngoscope 2016; 127:450-459. [DOI: 10.1002/lary.25998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences; Kyushu University; Japan
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Ken Matsushima
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Satoshi Matsuo
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Sam Safavi-Abbasi
- ACALA Neurosurgical Specialists, PC; Flagstaff Neurosurgery; Flagstaff Arizona U.S.A
| | - Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences; Kyushu University; Japan
| | - Albert L. Rhoton
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| |
Collapse
|
15
|
Eggers G, Mühling J. Template-based registration for image-guided skull base surgery. Otolaryngol Head Neck Surg 2016; 136:907-13. [PMID: 17547978 DOI: 10.1016/j.otohns.2006.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Objectives To evaluate whether patient-to-image registration with the use of a maxillary template is sufficiently accurate for image guided skull base surgery. Study Design and Setting In an experimental phantom study, pair-point registration of a skull phantom to its CT image data was performed with 243 different configurations of a maxillary template with markers. Then artificial skull mounted target markers were located with an infrared tracking device as used in navigation systems. Results The average target registration error was 1.57 mm in the anterior skull base (95% confidence interval, 1.53 to 1.61 mm), but 3.31 mm in the lateral skull base (95% confidence interval, 3.26 to 3.37 mm). Conclusions Fiducial marker registration based on a maxillary template is sufficiently accurate for image-guided surgery in the anterior skull base, but not for the lateral skull base. Significance Template-based registration is an accurate yet noninvasive registration method for frontal skull base surgery.
Collapse
Affiliation(s)
- Georg Eggers
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | | |
Collapse
|
16
|
Miller RS, Hashisaki GT, Kesser BW. Image-guided Localization of the Internal Auditory Canal via the Middle Cranial Fossa Approach. Otolaryngol Head Neck Surg 2016; 134:778-82. [PMID: 16647534 DOI: 10.1016/j.otohns.2005.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/06/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE: We sought to determine the accuracy of an electromagnetic image guidance surgical navigation system in localizing the midpoint of the internal auditory canal (IAC) and other structures of the temporal bone through the middle cranial fossa approach. MATERIALS AND METHODS: Seven fresh cadaveric whole heads were dissected via a middle cranial fossa approach. High-resolution CT scans were used with an InstaTrak 3500 Plus electromagnetic image guidance system (General Electric, Fairfield, CT). We evaluated the accuracy of identifying several middle cranial fossa landmarks including the midpoint of the IAC; the labyrinthine segment of the facial nerve; and the arcuate eminence, the carotid artery, and foramen spinosum. RESULTS: We were able to identify the middle of the IAC within 2.31 mm (range 0.65-7.52 mm, SD 2.39 mm). The arcuate eminence could be identified within 1.86 mm (range 1.49-2.37 mm, SD 0.36 mm). We noted some interference when the handpiece was within 6 to 8 cm of the microscope. CONCLUSION: Although computer-aided navigational tools are no substitute for thorough knowledge of temporal bone anatomy, we found the InstaTrak system reliable in identifying the midpoint of the IAC to within 2.4 mm through a middle fossa approach.
Collapse
Affiliation(s)
- Robert Sean Miller
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908-0713, USA
| | | | | |
Collapse
|
17
|
An advanced navigational surgery system for dental implants completed in a single visit: an in vitro study. J Craniomaxillofac Surg 2014; 43:117-25. [PMID: 25434287 DOI: 10.1016/j.jcms.2014.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, we have developed an advanced navigational implant surgery system to overcome some disadvantages of the conventional method and have evaluated the accuracy of the system under in vitro environment. The patient splint for registration and tracking was improvised using a bite splint without laboratory work and the offset of an exchanged drill was calibrated directly without pivoting during surgery. The mean target registration errors (TRE) were 0.35 ± 0.11 mm using the registration body, 0.34 ± 0.18 mm for the registration method with prerecorded fiducials, and 0.35 ± 0.16 mm for the direct calibration of a drill offset. The mean positional deviations between the planned and placed implants in 110 implant surgeries were 0.41 ± 0.12 mm at the center point of the platform and 0.56 ± 0.14 mm at the center point of the apex. The mean angular deviation was 2.64°± 1.31 for the long axis of the implant. In conclusion, the developed system exhibited high accuracy, and the improved tools and simplified procedures increased the convenience and availability. With this advanced approach, it will be possible to complete dental implant surgery during a single visit at local clinics using a navigational guidance involving cone-beam computed tomographic images.
Collapse
|
18
|
A projected landmark method for reduction of registration error in image-guided surgery systems. Int J Comput Assist Radiol Surg 2014; 10:541-54. [PMID: 24866060 DOI: 10.1007/s11548-014-1075-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Image-guided surgery systems are limited by registration error, so practical and effective methods to improve accuracy are necessary. A projection point-based method for reducing the surface registration error in image-guided surgery was developed and tested. METHODS Checkerboard patterns are projected on visible surfaces to create projected landmarks over a region of interest. Surface information thus becomes available in the form of point clouds of surface point coordinates with submillimeter resolution. The reconstructed 3D point cloud is registered using iterative closest point (ICP) approximation to a 3D point cloud extracted from preoperative CT images of the same region of interest. The projected landmark surface registration method was compared with two other methods using a facial surface phantom: (a) landmark registration using anatomical features, and (b) surface matching based on an additional 40 surface points. RESULTS The mean error for the projected landmark surface registration method was 0.64 mm, which was 47.4 and 35.3 % lower relative to mean errors of the anatomical landmark registration and the surface-matching methods, respectively. After applying the proposed method, using target registration error as a gold standard, the resulting mean error was 1.1 mm or a reduction of 61.2 % compared to the anatomical landmark registration. CONCLUSION Optical checkerboard pattern projection onto visible surfaces was used to acquire surface point clouds for image-guided surgery registration. A projected landmark method eliminated the effects of unwanted and overlapping points by acquiring the desired points at specific locations. The results were more accurate than conventional landmark or surface registration.
Collapse
|
19
|
Güler Ö, Perwög M, Kral F, Schwarm F, Bárdosi ZR, Göbel G, Freysinger W. Quantitative error analysis for computer assisted navigation: a feasibility study. Med Phys 2013; 40:021910. [PMID: 23387758 DOI: 10.1118/1.4773871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The benefit of computer-assisted navigation depends on the registration process, at which patient features are correlated to some preoperative imagery. The operator-induced uncertainty in localizing patient features-the user localization error (ULE)-is unknown and most likely dominating the application accuracy. This initial feasibility study aims at providing first data for ULE with a research navigation system. METHODS Active optical navigation was done in CT-images of a plastic skull, an anatomic specimen (both with implanted fiducials), and a volunteer with anatomical landmarks exclusively. Each object was registered ten times with 3, 5, 7, and 9 registration points. Measurements were taken at 10 (anatomic specimen and volunteer) and 11 targets (plastic skull). The active NDI Polaris system was used under ideal working conditions (tracking accuracy 0.23 mm root-mean-square, RMS; probe tip calibration was 0.18 mm RMS). Variances of tracking along the principal directions were measured as 0.18 mm(2), 0.32 mm(2), and 0.42 mm(2). ULE was calculated from predicted application accuracy with isotropic and anisotropic models and from experimental variances, respectively. RESULTS The ULE was determined from the variances as 0.45 mm (plastic skull), 0.60 mm (anatomic specimen), and 4.96 mm (volunteer). The predicted application accuracy did not yield consistent values for the ULE. CONCLUSIONS Quantitative data of application accuracy could be tested against prediction models with iso- and anisotropic noise models and revealed some discrepancies. This could potentially be due to the facts that navigation and one prediction model wrongly assume isotropic noise (tracking is anisotropic), while the anisotropic noise prediction model assumes an anisotropic registration strategy (registration is isotropic in typical navigation systems). The ULE data are presumably the first quantitative values for the precision of localizing anatomical landmarks and implanted fiducials. Submillimetric localization is possible for implanted screws; anatomic landmarks are not suitable for high-precision clinical navigation.
Collapse
Affiliation(s)
- Ö Güler
- Childrens' National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kral F, Puschban EJ, Riechelmann H, Freysinger W. Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery. Int J Med Robot 2013; 9:247-52. [DOI: 10.1002/rcs.1502] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Florian Kral
- Department of Otorhinolaryngology; Medical University Innsbruck; Austria
| | | | | | | |
Collapse
|
21
|
Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, Hashizume M. Warning navigation system using real-time safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg 2012; 8:395-405. [PMID: 23161169 DOI: 10.1007/s11548-012-0797-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/24/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE We developed a surgical navigation system that warns the surgeon with auditory and visual feedback to protect the facial nerve with real-time monitoring of the safe region during drilling. METHODS Warning navigation modules were developed and integrated into a free open source software platform. To obtain high registration accuracy, we used a high-precision laser-sintered template of the patient's bone surface to register the computed tomography (CT) images. We calculated the closest distance between the drill tip and the surface of the facial nerve during drilling. When the drill tip entered the safe regions, the navigation system provided an auditory and visual signal which differed in each safe region. To evaluate the effectiveness of the system, we performed phantom experiments for maintaining a given safe margin from the facial nerve when drilling bone models, with and without the navigation system. The error of the safe margin was measured on postoperative CT images. In real surgery, we evaluated the feasibility of the system in comparison with conventional facial nerve monitoring. RESULTS The navigation accuracy was submillimeter for the target registration error. In the phantom study, the task with navigation ([Formula: see text] mm) was more successful with smaller error, than the task without navigation ([Formula: see text] mm, [Formula: see text]). The clinical feasibility of the system was confirmed in three real surgeries. CONCLUSIONS This system could assist surgeons in preserving the facial nerve and potentially contribute to enhanced patient safety in the surgery.
Collapse
Affiliation(s)
- Byunghyun Cho
- Department of Advanced medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kohan D, Jethanamest D. Image-guided surgical navigation in otology. Laryngoscope 2012; 122:2291-9. [PMID: 22961537 DOI: 10.1002/lary.23522] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the efficacy of image-guided surgical navigation (IGSN) in otologic surgery and establish practice guidelines. STUDY DESIGN Prospective study. METHODS Between January 2003 and January 2010, all patients requiring complicated surgery for chronic otitis media, glomus jugulare, atresia, cerebrospinal fluid leak with or without encephalocele, and cholesterol granuloma of the petrous apex were offered IGSN. The accuracy of IGSN relative to pertinent pathology and 11 anatomic landmarks was established. Additionally IGSN-related operative time, complications, and surgical outcome were recorded. RESULTS In the study period there were 820 otologic procedures, among 94 patients (96 ears) with disease meeting proposed criteria. Thirteen patients (15 procedures) consented to the use of IGSN. All patients had a minimum 6 months of follow-up. The average additional operative time required was 36.7 minutes. The mean accuracy error was 1.1 mm laterally at the tragus but decreased to 0.8 mm medially at the level of the oval window. The mean accuracy of IGSN was within 1 mm in 10 of the 11 targeted surgical anatomic landmarks. CONCLUSIONS Interactive image-guided surgical navigation during complex otologic surgery may improve surgical outcome and decrease morbidity by providing an accurate real-time display of surgical instrumentation relative to patient anatomy and pathology. In select cases, the extra cost of imaging immediately prior to surgery and extra operating room time may be compensated by enhancing the ability to distinguish distorted anatomy relative to disease, potentially improving surgical outcome. IGSN, although useful, does not replace surgical expertise and experience.
Collapse
Affiliation(s)
- Darius Kohan
- Department of Otolaryngology, New York University School of Medicine, New York, New York, USA.
| | | |
Collapse
|
23
|
Grauvogel TD, Grauvogel J, Arndt S, Berlis A, Maier W. Is there an equivalence of non-invasive to invasive referenciation in computer-aided surgery? Eur Arch Otorhinolaryngol 2012; 269:2285-90. [DOI: 10.1007/s00405-012-2023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
|
24
|
Reaungamornrat S, Otake Y, Uneri A, Schafer S, Mirota DJ, Nithiananthan S, Stayman JW, Kleinszig G, Khanna AJ, Taylor RH, Siewerdsen JH. An on-board surgical tracking and video augmentation system for C-arm image guidance. Int J Comput Assist Radiol Surg 2012; 7:647-65. [PMID: 22539008 DOI: 10.1007/s11548-012-0682-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Conventional tracker configurations for surgical navigation carry a variety of limitations, including limited geometric accuracy, line-of-sight obstruction, and mismatch of the view angle with the surgeon's-eye view. This paper presents the development and characterization of a novel tracker configuration (referred to as "Tracker-on-C") intended to address such limitations by incorporating the tracker directly on the gantry of a mobile C-arm for fluoroscopy and cone-beam CT (CBCT). METHODS A video-based tracker (MicronTracker, Claron Technology Inc., Toronto, ON, Canada) was mounted on the gantry of a prototype mobile isocentric C-arm next to the flat-panel detector. To maintain registration within a dynamically moving reference frame (due to rotation of the C-arm), a reference marker consisting of 6 faces (referred to as a "hex-face marker") was developed to give visibility across the full range of C-arm rotation. Three primary functionalities were investigated: surgical tracking, generation of digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool or the current C-arm angle, and augmentation of the tracker video scene with image, DRR, and planning data. Target registration error (TRE) was measured in comparison with the same tracker implemented in a conventional in-room configuration. Graphics processing unit (GPU)-accelerated DRRs were generated in real time as an assistant to C-arm positioning (i.e., positioning the C-arm such that target anatomy is in the field-of-view (FOV)), radiographic search (i.e., a virtual X-ray projection preview of target anatomy without X-ray exposure), and localization (i.e., visualizing the location of the surgical target or planning data). Video augmentation included superimposing tracker data, the X-ray FOV, DRRs, planning data, preoperative images, and/or intraoperative CBCT onto the video scene. Geometric accuracy was quantitatively evaluated in each case, and qualitative assessment of clinical feasibility was analyzed by an experienced and fellowship-trained orthopedic spine surgeon within a clinically realistic surgical setup of the Tracker-on-C. RESULTS The Tracker-on-C configuration demonstrated improved TRE (0.87 ± 0.25) mm in comparison with a conventional in-room tracker setup (1.92 ± 0.71) mm (p < 0.0001) attributed primarily to improved depth resolution of the stereoscopic camera placed closer to the surgical field. The hex-face reference marker maintained registration across the 180° C-arm orbit (TRE = 0.70 ± 0.32 mm). DRRs generated from the perspective of the C-arm X-ray detector demonstrated sub- mm accuracy (0.37 ± 0.20 mm) in correspondence with the real X-ray image. Planning data and DRRs overlaid on the video scene exhibited accuracy of (0.59 ± 0.38) pixels and (0.66 ± 0.36) pixels, respectively. Preclinical assessment suggested potential utility of the Tracker-on-C in a spectrum of interventions, including improved line of sight, an assistant to C-arm positioning, and faster target localization, while reducing X-ray exposure time. CONCLUSIONS The proposed tracker configuration demonstrated sub- mm TRE from the dynamic reference frame of a rotational C-arm through the use of the multi-face reference marker. Real-time DRRs and video augmentation from a natural perspective over the operating table assisted C-arm setup, simplified radiographic search and localization, and reduced fluoroscopy time. Incorporation of the proposed tracker configuration with C-arm CBCT guidance has the potential to simplify intraoperative registration, improve geometric accuracy, enhance visualization, and reduce radiation exposure.
Collapse
Affiliation(s)
- S Reaungamornrat
- Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room #726, 720 Rutland Avenue, Baltimore, MD 21205-2109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ledderose GJ, Hagedorn H, Spiegl K, Leunig A, Stelter K. Image guided surgery of the lateral skull base: Testing a new dental splint registration device. ACTA ACUST UNITED AC 2011; 17:13-20. [DOI: 10.3109/10929088.2011.632783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Wittmann W, Wenger T, Zaminer B, Lueth TC. Automatic Correction of Registration Errors in Surgical Navigation Systems. IEEE Trans Biomed Eng 2011; 58:2922-30. [DOI: 10.1109/tbme.2011.2163156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Tsunezuka H, Kato D, Terauchi K, Shimomura M, Ichise K, Ito K, Nishikawa A, Shimada J. Analysis of surgeon's line of sight using an optical tracking system with a multifaceted marker device. Int J Comput Assist Radiol Surg 2011; 6:803-9. [PMID: 21512785 DOI: 10.1007/s11548-011-0565-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE Video-assisted thoracoscopic surgery (VATS) is a widely used technique where operating surgeons alternate between direct vision through minithoracotomy and monitor-aided vision as required. We analyzed surgeons' line of sight to assess their proficiency at using an optical tracking system with a multifaceted marker device. METHODS An infrared optical tracking system was developed that is capable of integrating information from a multifaceted marker device and analyzing three-dimensional (3D) dynamic movements including flexion and rotation. Using this system, we analyzed multiple aspects of surgeons' head poses, thereby indirectly identifying their visual line of sight. A multifaceted device comprising 4 surfaces and 4 markers was constructed and attached to surgeons' heads. The surgeons' head motions were tracked using this multifaceted device and videotaped their face while they performed wedge resection. Both data sets were compared. RESULTS The system could document 98.5% of surgeons' head motions, with a high correlation (<kappa> = 0.935) between data acquired using the multifaceted device and video analysis. An inverse correlation was observed between tumor size and the monitor-viewing time ratio by surgeons in pulmonary wedge resection (R(2) = 0.728). CONCLUSION An optical tracking system with a multifaceted device was able to measure 3D dynamic movements of thoracic surgeons. The associated problems of reflection angle and marker shielding were solved. The utility of this device for analyzing surgeons' visual line of sight during VATS was established.
Collapse
Affiliation(s)
- Hiroaki Tsunezuka
- Department of General Thoracic Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Automated dental implantation using image-guided robotics: registration results. Int J Comput Assist Radiol Surg 2011; 6:627-34. [PMID: 21221831 DOI: 10.1007/s11548-010-0543-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. METHODS An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. RESULTS FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). CONCLUSIONS The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.
Collapse
|
29
|
Determination of the curling behavior of a preformed cochlear implant electrode array. Int J Comput Assist Radiol Surg 2010; 6:421-33. [PMID: 20665247 DOI: 10.1007/s11548-010-0520-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Accurate insertion of a cochlear implant electrode array into the cochlea's helical shape is a crucial step for residual hearing preservation. In image-guided surgery, especially using an automated insertion tool, the overall accuracy of the operative procedure can be improved by adapting the electrode array's intracochlear movement to the individual cochlear shape. METHODS The curling characteristic of a commercially available state-of-the-art preformed electrode array (Cochlear Ltd. Contour Advance(TM) Electrode Array) was determined using an image-processing algorithm to detect its shape in series of images. An automatic image-processing procedure was developed using Matlab and the Image Processing Toolbox (MathWorks, Natick, Massachusetts, USA) to determine the complete curvature of the electrode array by identifying the 22 platinum contacts of the electrode. A logarithmic spiral was used for a comprehensive mathematical description of the shape of the electrode array. A fitting algorithm for nonlinear least-squares problems was used to provide a complete mathematical description of the electrode array. The system was tested for curling behavior as a function of stylet extraction using nine Contour Advance Research Electrodes (RE) and additionally for nine Contour Advance Practice Electrodes (PE). RESULTS All arrays show a typical pattern of curling with adequate predictability after the first 2 or 3 millimeters of stylet extraction. Although non-negligible variations in the overall curling behavior were detected, the electrode arrays show a characteristic movement due to the stylet extraction and only vary minimally after this initial phase. CONCLUSION These results indicate that the risk of intracochlear trauma can be reduced if the specific curling behavior of the electrode carrier is incorporated into the insertion algorithm. Furthermore, the determination of the curling behavior is an essential step in computer-aided cochlear implant electrode development. Experimental data are required for accurate evaluation of the simulation model.
Collapse
|
30
|
Grauvogel TD, Soteriou E, Metzger MC, Berlis A, Maier W. Influence of different registration modalities on navigation accuracy in ear, nose, and throat surgery depending on the surgical field. Laryngoscope 2010; 120:881-8. [PMID: 20422680 DOI: 10.1002/lary.20867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Various invasive and noninvasive registration methods have been established in the past for intraoperative navigation. The present study compared the registration and navigation accuracy of three different registration modalities in anatomical locations of special interest for ear, nose, and throat surgery. STUDY DESIGN Prospective experimental phantom study. METHODS Four skull models were individually fabricated with a three-dimensional printer based on the patient's computed tomography data sets and fitted with an individual customized silicone skin. Three different registration modalities were examined: 1) invasive marker (IM), 2) oral splint (OS), and 3) laser scan (L). Accuracy measurements were assessed by targeting 26 titanium screws placed over the skull. The overall accuracy and the target registration error for eight selected anatomical locations were measured. RESULTS Mean accuracy was 0.67 + or - 0.1 mm (quadratic mean + or - standard deviation) for IM, 0.98 + or - 0.16 mm for OS, and 1.3 + or - 0.12 mm for L. The greatest differences in accuracy were found on the mastoid with best accuracy for IM (0.59 + or - 0.2 mm; P < .05 vs. OS and L), followed by OS (1.23 + or - 0.41 mm; P < .05 vs. L), and L (1.88 + or - 0.45 mm). In contrast, only small differences in accuracy were detected in the anterior skull base between the registration modalities (IM 0.75 + or - 0.21 mm, OS 0.71 + or - 0.27 mm, L 0.93 + or - 0.34 mm). CONCLUSIONS L and OS meet accuracy requirements in the midface and anterior skull base. OS is superior to L with navigation accuracies comparable to marker registration. However, neither method meets the high precision requirements for lateral skull base surgery. Laryngoscope, 2010.
Collapse
Affiliation(s)
- Tanja D Grauvogel
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert-Ludwigs-University, Killianstrasse 5, 79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Labadie RF, Shah RJ, Harris SS, Cetinkaya E, Haynes DS, Fenlon MR, Juscyzk AS, Galloway RL, Fitzpatrick JM. Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery. ACTA ACUST UNITED AC 2010; 9:145-53. [PMID: 16192054 DOI: 10.3109/10929080500066922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Otologic surgery is undertaken to treat ailments of the ear, including persistent infections, hearing loss, vertigo, and cancer. Typically performed on otherwise-healthy patients in outpatient facilities, the application of image-guided surgery (IGS) has been limited because accurate (<1 mm), non-invasive fiducial systems for otologic surgery have not been available. We now present such a fiducial system. METHODS A dental bite-block was fitted with a custom-designed rigid frame with 7 fiducial markers surrounding each external ear. The bones containing the ear (i.e., the temporal bones) of 3 cadaveric skulls were removed and replaced with discs containing 13 surgical targets arranged in a cross-hair pattern about the centroid of each ear. The surgical targets (26/skull) and fiducial markers (14/skull) were identified both within CT scans using a published algorithm and in physical space using an infrared optical tracking system. Fiducial registration error (FRE), fiducial localization error (FLE), and target registration error (TRE) were calculated. RESULTS For all trials, root mean square FRE = 0.66, FLE = 0.72, and TRE = 0.77 mm. The mean TRE for n = 234 independent targets was 0.73 with a standard deviation of 0.25 mm. CONCLUSIONS Using a novel, non-invasive fiducial system (the EarMark), submillimetric accuracy was repeatably achieved. This system will facilitate image-guided otologic surgery.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2559, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Widmann G, Stoffner R, Sieb M, Bale R. Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot 2009; 5:355-65. [DOI: 10.1002/rcs.271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. ACTA ACUST UNITED AC 2009; 107:701-15. [DOI: 10.1016/j.tripleo.2009.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/15/2022]
|
34
|
Rau TS, Hussong A, Leinung M, Lenarz T, Majdani O. Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J Comput Assist Radiol Surg 2009; 5:173-81. [DOI: 10.1007/s11548-009-0299-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/13/2009] [Indexed: 11/30/2022]
|
35
|
Matsumoto N, Hong J, Hashizume M, Komune S. A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol Head Neck Surg 2009; 140:96-102. [PMID: 19130970 DOI: 10.1016/j.otohns.2008.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE A new, minimally invasive registration method was developed for image-guided otologic surgery. We utilized laser-sintered template of the patient's bone surface to transfer the virtual markers to the patient's bone intraoperatively and eliminated the necessity for preoperative marker positioning or additional CT scan. STUDY DESIGN Simulation surgeries and clinical application. SUBJECTS AND METHODS We measured registration errors in 10 trials using replicas and six ear surgeries (two cochlear implant insertions, four translabyrinthine acoustic tumor removals). RESULTS The target registration errors varied among the surgical targets. Errors were less than 1 mm near the cochlear implant insertion target both in phantom study and in actual surgeries. CONCLUSION Our newly developed method reduced the preoperative procedures for patients but did not reduce the accuracy in cochlear implant surgery. Our method would be a useful image-guided surgery method in the field of otology, where both accuracy and noninvasiveness are required.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
36
|
Accuracy of image-guided surgical systems at the lateral skull base as clinically assessed using bone-anchored hearing aid posts as surgical targets. Otol Neurotol 2009; 29:1050-5. [PMID: 18836389 DOI: 10.1097/mao.0b013e3181859a08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Image-guided surgical (IGS) technology has been clinically available for more than a decade. To date, no acceptable standard exists for reporting the accuracy of IGS systems, especially for lateral skull base applications. We present a validation method that uses the post from bone-anchored hearing aid (BAHA) patients as a target. We then compare the accuracy of 2 IGS systems-one using laser skin-surface scanning (LSSS) and another using a noninvasive fiducial frame (FF) attached to patient via dental bite-block (DBB) for registration. STUDY DESIGN Prospective. SETTING Tertiary referral center. PATIENTS Six BAHA patients who had adequate dentition for creation of a DBB. INTERVENTION(S) For each patient, a dental impression was obtained, and a customized DBB was made to hold an FF. Temporal bone computed tomographic (CT) scans were obtained with the patient wearing the DBB, FF, and a customized marker on the BAHA post. In a mock operating room, CT scans were registered to operative anatomy using 2 methods: 1) LSSS and 2) FF. MAIN OUTCOME MEASURE(S) For each patient and each system, the position of the BAHA marker in the CT scan and in the mock operating room (using optical measurement technology) was compared, and the distances between them are reported to demonstrate accuracy. RESULTS Accuracy (mean +/- standard deviation) was 1.54 +/- 0.63 mm for DBB registration and 3.21 +/- 1.02 mm for LSSS registration. CONCLUSION An IGS system using FF registration is more accurate than one using LSSS (p = 0.03, 2-sided Student's t test). BAHA patients provide a unique patient population upon which IGS systems may be validated.
Collapse
|
37
|
Hong J, Matsumoto N, Ouchida R, Komune S, Hashizume M. Medical navigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans Biomed Eng 2008; 56:426-32. [PMID: 19272886 DOI: 10.1109/tbme.2008.2008168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An image-guided surgical system for otologic surgery was developed and clinically evaluated. With reliable hybrid registration, real-time patient movement compensation and virtual intraoperative computed tomography imaging have been originally proposed. In contrast to the commercially available systems that mainly use 2-D images for pointing probes, in this system, the surgical drill position is navigated and displayed in the 3-D space with real-time surface rendering. In a temporal bone model study, the navigation accuracy was 1.12 +/- 0.09 mm with regard to the target registration error. Initial clinical evaluation of the proposed method was performed in five cochlea implantation surgeries. Accurate insertion of the electrodes into the cochlea was achieved, and the facial nerve was protected from injury in all surgeries. The proposed method could be applied to various surgeries for accurate targeting and protection of critical organs.
Collapse
Affiliation(s)
- Jaesung Hong
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
38
|
Bartling SH, Majdani O, Gupta R, Rodt T, Dullin C, Fitzgerald PF, Becker H. Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging. Dentomaxillofac Radiol 2007; 36:317-27. [PMID: 17699701 DOI: 10.1259/dmfr/19164138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the feasibility of flat-panel detector based volumetric CT (fpVCT) scanning of the whole human skull base and maxillofacial region, which has thus far only been demonstrated on small, excised specimens. Flat-panel detectors offer more favourable imaging properties than image intensifiers. It is therefore likely that they will replace them in cone-beam CT scanners that are currently used to scan parts of the skull base and maxillofacial region. Furthermore, the resolution of current CT imaging limits diagnosis, surgical planning and intraoperative navigation within these regions. fpVCT might overcome these limitations because it offers higher resolution of high contrast structures than current CT. METHODS Three embalmed cadaver heads were scanned in two scanners: an experimental fpVCT that offers a scan field large enough for a whole human head, and in a current multislice CT (MSCT). 28 structures were compared. RESULTS Both scanners produced bone images of diagnostic quality. Small high contrast structures such as parts of the ossicular chain and thin bony laminas were better delineated in fpVCT than in MSCT. fpVCT of maxillofacial region and skull base was rated superior to MSCT (P=0.002) as found in this limited, experimental study. CONCLUSIONS High spatial resolution fpVCT scanning of both regions in a whole human head is feasible and might be slightly superior to MSCT. fpVCT could improve diagnostic accuracy in selected cases, as well as surgical planning and intraoperative navigation accuracy.
Collapse
Affiliation(s)
- S H Bartling
- Department of Neuroradiology, OE 8210, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Found in Translation; From the Laboratory to the Operating Room to the Market. ACTA ACUST UNITED AC 2007; 2007:5162-5. [DOI: 10.1109/iembs.2007.4353504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Rodt T, Köppen G, Lorenz M, Majdani O, Leinung M, Bartling S, Kaminsky J, Krauss JK. Placement of Intraventricular Catheters Using Flexible Electromagnetic Navigation and a Dynamic Reference Frame: A New Technique. Stereotact Funct Neurosurg 2007; 85:243-8. [PMID: 17534137 DOI: 10.1159/000103263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Catheterization of narrow ventricles may prove difficult resulting in misplacement or inefficient trials with potential damage to brain tissue. MATERIAL AND METHODS The application of a new module for navigated ventricular catheterization using flexible electromagnetic navigation and a dynamic reference frame is presented. RESULTS Navigated catheter placement was successful and accurate in a pilot study. Electromagnetic interferences had to be taken into consideration. CONCLUSION Flexible electromagnetic navigation with a dynamic reference frame is a useful tool for catheter placement as it reduces the risk of misplacement or repeated catheterization trials.
Collapse
Affiliation(s)
- Thomas Rodt
- Department of Neurosurgery, Hannover University Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 2006; 20:1187-202. [PMID: 16651659 PMCID: PMC1472477 DOI: 10.1101/gad.1407906] [Citation(s) in RCA: 415] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to <40% of normal causes variable microphthalmia as a result of aberrant neural progenitor differentiation. Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells. Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans.
Collapse
Affiliation(s)
- Olena V Taranova
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Rafferty MA, Siewerdsen JH, Chan Y, Daly MJ, Moseley DJ, Jaffray DA, Irish JC. Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg 2006; 134:801-8. [PMID: 16647538 DOI: 10.1016/j.otohns.2005.12.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To describe our preclinical experience with Cone Beam CT (CBCT) in image-guided surgery of the temporal bone. STUDY DESIGN AND SETTINGS A mobile isocentric C-arm (PowerMobil, Siemens Medical Systems, Erlangen, Germany) modified to include a flat-panel detector (Varian Imaging Products, Palo Alto, CA) and a motorized orbit was developed to acquire multiple projections in rotation about a subject. Initial experiments imaging steel wire in air were used to investigate the system's spatial resolution in 3D image reconstruction. Subsequently temporal bone dissection was performed on five cadaver heads using the modified C-arm as an image guidance system. RESULTS We obtained a spatial resolution of 0.85 mm. The image acquisition time was 120 seconds and the radiation dose approximately one-tenth of a conventional CT scan. CONCLUSION CBCT provided submillimeter accuracy at high speed with low radiation dosage to offer utility as an intraoperative imaging system. SIGNIFICANCE CBCT offers technology that approximates "near-real-time" image guidance. EBM RATING C-4.
Collapse
Affiliation(s)
- Mark A Rafferty
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, and Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Labadie RF, Chodhury P, Cetinkaya E, Balachandran R, Haynes DS, Fenlon MR, Jusczyzck AS, Fitzpatrick JM. Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 2005; 26:557-62. [PMID: 16015146 DOI: 10.1097/01.mao.0000178117.61537.5b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Image-guided surgery will permit accurate access to the middle ear via the facial recess using a single drill hole from the lateral aspect of the mastoid cortex. BACKGROUND The widespread use of image-guided methods in otologic surgery has been limited by the need for a system that achieves the necessary level of accuracy with an easy-to-use, noninvasive fiducial marker system. We have developed and recently reported such a system (accuracy within the temporal bone = 0.76 +/- 0.23 mm; n = 234 measurements). With this system, image-guided otologic surgery is feasible. METHODS Skulls (n = 2) were fitted with a dental bite-block affixed fiducial frame and scanned by computed tomography using standard temporal-bone algorithms. The frame was removed and replaced with an infrared emitter used to track the skull during dissection. Tracking was accomplished using an infrared tracker and commercially available software. Using this system in conjunction with a tracked otologic drill, the middle ear was approached via the facial recess using a single drill hole from the lateral aspect of the mastoid cortex. The path of the drill was verified by subsequently performing a traditional temporal bone dissection, preserving the tunnel of bone through which the drill pass had been made. RESULTS An accurate approach to the middle ear via the facial recess was achieved without violating the canal of the facial nerve, the horizontal semicircular canal, or the external auditory canal. CONCLUSIONS Image-guided otologic surgery provides access to the cochlea via the facial recess in a minimally invasive, percutaneous fashion. While the present study was confined to in vitro demonstration, these exciting results warrant in vivo testing, which may lead to clinically applicable access.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8605, USA.
| | | | | | | | | | | | | | | |
Collapse
|