1
|
Turgut N, Cengiz Çallıoğlu F, Bayraktar A, Savran M, Aşcı H, Gülle K, Ünal M. FGF-2 enriched nanofiber scaffold for advancing achilles tendon healing: a comparative experimental investigation. Front Surg 2024; 11:1424734. [PMID: 39483374 PMCID: PMC11524941 DOI: 10.3389/fsurg.2024.1424734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Achilles tendon rupture is a common and debilitating injury that significantly impacts mobility and quality of life. Effective treatment options that promote faster and more complete healing are needed. Fibroblast growth factor-2 (FGF-2) has shown potential in enhancing tendon repair. This study aims to investigate the efficacy of FGF-2 in promoting tendon healing in a rat model of Achilles tendon rupture, providing insights into its potential as a therapeutic option. Materials and methods Forty-eight rat hind legs with complete Achilles tendon ruptures were divided into four equal groups: the Sham (S) group (tendon repair only), the Polymer (P) group (tendon repair with scaffold wrapping), the Produced FGF-2 (PF) group (scaffold coated with lab-produced FGF-2), and the Commercial FGF-2 (CF) group (scaffold coated with commercially sourced FGF-2). Histological analyses at two and four weeks post-surgery evaluated healing based on nuclear morphology, vascularity, fibril organization, inflammation, and adipogenesis. Results At the end of the second week, no macroscopic healing was observed in one rat each from the S and P groups. By the end of the fourth week, macroscopic healing was observed in all groups. The S and P groups exhibited similarly severe fibril disorganization, pathological adipogenesis, and sustained inflammation, particularly at the fourth week. In contrast, the CF group demonstrated improved tendon healing with increased vascularity and extracellular matrix, lower inflammatory cell infiltration, and better fibril organization. Pathological adipogenesis was absent in the CF group, especially at the fourth week. The PF group showed comparable improvements at the second week but experienced a relapse by the 4th week, with increased inflammation and adipogenesis. Conclusion FGF-2 coated scaffolds significantly enhanced tendon healing in a rat Achilles tendon rupture model by improving fibril organization, increasing vascularity, and reducing inflammation and pathological adipogenesis. These findings suggest that FGF-2 could be a promising therapeutic option for accelerating tendon repair. Future perspectives on tendon repair will focus on enhancing FGF-2 delivery using innovative scaffolds, paving the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Necmettin Turgut
- Department of Orthopedics and Traumatology, Faculty of Medicine, Adana Dr. Turgut Noyan Research and Training Centre, Başkent University, Adana, Türkiye
| | - Funda Cengiz Çallıoğlu
- Department of Textile Engineering, Engineering Faculty, Süleyman Demirel University, Isparta, Türkiye
| | - Aytül Bayraktar
- Department of Chemistry Engineering, Engineering Faculty, Süleyman Demirel University, Isparta, Türkiye
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Kanat Gülle
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Meriç Ünal
- Department of Orthopedics and Traumatology, Private Meddem Hospital, Isparta, Türkiye
| |
Collapse
|
2
|
Totoki Y, Mutsuzaki H, Yanagisawa Y, Sogo Y, Yasunaga M, Noguchi H, Matsumoto Y, Koda M, Ito A, Yamazaki M. Do Stainless-Steel Pins Coated with Fibroblast Growth Factor-Calcium Phosphatase Composite Layers Have Anti-Infective Effects? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1419. [PMID: 39336460 PMCID: PMC11434512 DOI: 10.3390/medicina60091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Background: The most problematic complication of external fixation is infection at the pin insertion site. Technology that improves the adhesion of the external fixation pin to the skin, subcutaneous tissue, and bone may prevent infection at the pin site. The purpose of this study is to formulate a calcium phosphate-fibroblast growth factor (Cp-FGF) coating on a stainless-steel external fixation pin and to verify its effectiveness in reducing infection at the pin site and its possible influence on bone fixation in animal experiments. Methods: We compared stainless-steel screws without coating (SS group; n = 32), those with a calcium phosphate coating (Cp group; n = 30), those with a Cp-FGF coating (FGF group; n = 32), and those with a Cp-FGF coating having enhanced biological activity (FGF+ group; n = 32) in male Japanese white domesticated rabbits. Screws were inserted percutaneously into the bilateral proximal tibial diaphysis of the rabbits and implanted for 4 weeks. Screws and periscrew tissue were observed postoperatively for qualitatively assessing infection. Results: Infection assessment by gross findings after 4 weeks (at screw removal) showed no significant differences between the groups. Histopathological evaluation of soft tissue infection and bone tissue infection showed no significant differences between the groups for either soft tissue or bone tissue. Since neither the FGF+ group nor the FGF group showed anti-infective effects, the biological activity of FGF is not the only determining factor. We compared SEM, XRD, coating detaching test, sustained release test, and bioassay to examine physicochemical properties among the coatings but found no sufficient differences. Conclusions: It is suggested that improving the tissue adhesion to and/or biocompatibility of pins is also important to improve the in vivo performance of Cp-FGF-coated external fixation pins.
Collapse
Affiliation(s)
- Yasukazu Totoki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Hirotaka Mutsuzaki
- Center for Medical Science, Ibaraki Prefectural University of Health Sciences, Ami 300-0394, Ibaraki, Japan
- Department of Orthopedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, Ami 300-0331, Ibaraki, Japan
| | - Yohei Yanagisawa
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Yu Sogo
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Mayu Yasunaga
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Hiroshi Noguchi
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Yukei Matsumoto
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Masao Koda
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Atsuo Ito
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
- Department of Orthopaedic Surgery, Ichihara Hospital, Tsukuba 300-3295, Ibaraki, Japan
| |
Collapse
|
3
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
4
|
Veizi E, Alkan H, Çay N, Şahin A, Çepni Ş, Tecimel O, Fırat A. Clinical and radiological comparison of bioactive glass and poly-L-lactic acid/hydroxyapatite bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament reconstruction. Orthop Traumatol Surg Res 2022; 108:103247. [PMID: 35167963 DOI: 10.1016/j.otsr.2022.103247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ligament reconstruction is still the main treatment modality for patients with a complete ligament rupture. The semitendinosus tendon, alone quadrupled or double folded and combined with the gracilis tendon, is still the most frequently used autologous graft for a reconstructive procedure. Absorbable interference screw usage has gained popularity in the past decade because they create less artifacts during MR imaging and tend to osteointegrate over the years, arguably leading to a more anatomic fixation. The purpose of this study was to compare the 5-year radiological and clinical results of two different tibial graft fixation screws. HYPOTHESIS We hypothesized that bioabsorbable interference screws made of bioactive glass would lead to higher rates of osteointegration, better overall clinical results, less foreign body reaction rates and less tibial tunnel widening when compared to the poly-L-lactic acid/hydroxyapatite (PLLA-HA) screws. PATIENTS AND METHODS Fifty-one patients treated with an anatomic single bundle ACL reconstruction between June 2015 and July 2016 at our institution were included in the study. The tibial graft was fixed with a bioactive glass screw in 24, and with a PLLA-HA in 27 patients. Tibial tunnel widening, foreign body reaction, osteointegration and resorption rates were evaluated and compared on a magnetic resonance scan at a minimum of 5 year postoperatively. Overall clinical results and side-to-side difference on KT-1000 were also analyzed in-between groups. RESULTS Tibial tunnel widening was similar for both groups. Foreign body reaction, while not statistically significant, was less aggressive when bioactive glass screws were used. Osteointegration and resorption rates of the bioactive glass screws were significantly higher than the PLLA-HA group (p=0.000). While all patients showed an overall improvement on postoperative scores (p=0.000), patients with a bioactive glass interference screw had statistically higher translational stability with KT-1000, compared to the poly-L-lactic acid/hydroxyapatite group (p=0.001). DISCUSSION At a minimum of 5 years, compared to conventional PLLA-HA interference screws, 45S5 bioactive glass screw provide higher resorption rates, are more highly biodegradable and provide overall good clinical results. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Enejd Veizi
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey.
| | - Hilmi Alkan
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| | - Nurdan Çay
- Department of Radiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ali Şahin
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| | - Şahin Çepni
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| | - Osman Tecimel
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Fırat
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|