1
|
Ye Z, Zhao T, Xia W. Seeing through multimode fibers using real-valued intensity transmission matrix with deep learning. OPTICS EXPRESS 2025; 33:16222-16236. [PMID: 40219515 PMCID: PMC12011376 DOI: 10.1364/oe.553949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025]
Abstract
Multimode fibers (MMFs) are emerging as a highly attractive technology for applications in biomedical endoscopy and telecommunications, thanks to their ability to transmit images and data through a large number of transverse optical modes. However, light transmission through MMFs suffers from distortions caused by mode dispersion and coupling. While recent deep learning advancements have shown potential for improving image transmission through MMFs, these methods typically require an extensive training dataset and often exhibit limited generalization capability. In this work, we propose a hybrid approach that combines a real-valued intensity transmission matrix (RVITM) with deep learning for enhanced image retrieval through MMFs. Our approach first characterizes the MMF and retrieves images using a RVITM algorithm, followed by refinement with a hierarchical, parallel multi-scale (HPM)-attention U-Net to improve image quality. Experimental results demonstrated that our approach achieved high-quality reconstructions, with structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) values of up to 0.9524 and 33.244 dB, respectively. This approach also offers strong generalization capabilities, requires fewer training samples and converges more quickly compared to purely deep learning-based methods reported in the literature. These results highlight the potential of our method for ultrathin endoscopy applications and spatial-mode multiplexing in telecommunications using MMFs.
Collapse
Affiliation(s)
- Ziyu Ye
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
2
|
Yang S, Hu S. Perspectives on endoscopic functional photoacoustic microscopy. APPLIED PHYSICS LETTERS 2024; 125:030502. [PMID: 39022117 PMCID: PMC11251735 DOI: 10.1063/5.0201691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Endoscopy, enabling high-resolution imaging of deep tissues and internal organs, plays an important role in basic research and clinical practice. Recent advances in photoacoustic microscopy (PAM), demonstrating excellent capabilities in high-resolution functional imaging, have sparked significant interest in its integration into the field of endoscopy. However, there are challenges in achieving functional PAM in the endoscopic setting. This Perspective article discusses current progress in the development of endoscopic PAM and the challenges related to functional measurements. Then, it points out potential directions to advance endoscopic PAM for functional imaging by leveraging fiber optics, microfabrication, optical engineering, and computational approaches. Finally, it highlights emerging opportunities for functional endoscopic PAM in basic and translational biomedicine.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
3
|
Jiang D, Zhu L, Tong S, Shen Y, Gao F, Gao F. Photoacoustic imaging plus X: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11513. [PMID: 38156064 PMCID: PMC10753847 DOI: 10.1117/1.jbo.29.s1.s11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Significance Photoacoustic (PA) imaging (PAI) represents an emerging modality within the realm of biomedical imaging technology. It seamlessly blends the wealth of optical contrast with the remarkable depth of penetration offered by ultrasound. These distinctive features of PAI hold tremendous potential for various applications, including early cancer detection, functional imaging, hybrid imaging, monitoring ablation therapy, and providing guidance during surgical procedures. The synergy between PAI and other cutting-edge technologies not only enhances its capabilities but also propels it toward broader clinical applicability. Aim The integration of PAI with advanced technology for PA signal detection, signal processing, image reconstruction, hybrid imaging, and clinical applications has significantly bolstered the capabilities of PAI. This review endeavor contributes to a deeper comprehension of how the synergy between PAI and other advanced technologies can lead to improved applications. Approach An examination of the evolving research frontiers in PAI, integrated with other advanced technologies, reveals six key categories named "PAI plus X." These categories encompass a range of topics, including but not limited to PAI plus treatment, PAI plus circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. Results After conducting a comprehensive review of the existing literature and research on PAI integrated with other technologies, various proposals have emerged to advance the development of PAI plus X. These proposals aim to enhance system hardware, improve imaging quality, and address clinical challenges effectively. Conclusions The progression of innovative and sophisticated approaches within each category of PAI plus X is positioned to drive significant advancements in both the development of PAI technology and its clinical applications. Furthermore, PAI not only has the potential to integrate with the above-mentioned technologies but also to broaden its applications even further.
Collapse
Affiliation(s)
- Daohuai Jiang
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Fujian Normal University, College of Photonic and Electronic Engineering, Fuzhou, China
| | - Luyao Zhu
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Shangqing Tong
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Yuting Shen
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Feng Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Fei Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
4
|
Thompson WR, Brecht HPF, Ivanov V, Yu AM, Dumani DS, Lawrence DJ, Emelianov SY, Ermilov SA. Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036001. [PMID: 36895414 PMCID: PMC9990133 DOI: 10.1117/1.jbo.28.3.036001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Significance To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals. Aim We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments. Approach The imaging platform's detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity. Results The system characterization yielded a PA spatial resolution of 173 ± 17 μ m in the transverse plane and 640 ± 120 μ m in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient μ a = 0.258 cm - 1 , an optical spatial resolution of 70 μ m in the vertical axis and 112 μ m in the horizontal axis, and a FL sensitivity detection limit not < 0.9 μ M concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs. Conclusions The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.
Collapse
Affiliation(s)
| | | | - Vassili Ivanov
- PhotoSound Technologies, Inc., Houston, Texas, United States
| | - Anthony M. Yu
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Diego S. Dumani
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Stanislav Y. Emelianov
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | |
Collapse
|
5
|
Zhao T, Pham TT, Baker C, Ma MT, Ourselin S, Vercauteren T, Zhang E, Beard PC, Xia W. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery. BIOMEDICAL OPTICS EXPRESS 2022; 13:4414-4428. [PMID: 36032566 PMCID: PMC9408236 DOI: 10.1364/boe.463057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic (PA) endoscopy has shown significant potential for clinical diagnosis and surgical guidance. Multimode fibres (MMFs) are becoming increasingly attractive for the development of miniature endoscopy probes owing to their ultrathin size, low cost and diffraction-limited spatial resolution enabled by wavefront shaping. However, current MMF-based PA endomicroscopy probes are either limited by a bulky ultrasound detector or a low imaging speed that hindered their usability. In this work, we report the development of a highly miniaturised and high-speed PA endomicroscopy probe that is integrated within the cannula of a 20 gauge medical needle. This probe comprises a MMF for delivering the PA excitation light and a single-mode optical fibre with a plano-concave microresonator for ultrasound detection. Wavefront shaping with a digital micromirror device enabled rapid raster-scanning of a focused light spot at the distal end of the MMF for tissue interrogation. High-resolution PA imaging of mouse red blood cells covering an area 100 µm in diameter was achieved with the needle probe at ∼3 frames per second. Mosaicing imaging was performed after fibre characterisation by translating the needle probe to enlarge the field-of-view in real-time. The developed ultrathin PA endomicroscopy probe is promising for guiding minimally invasive surgery by providing functional, molecular and microstructural information of tissue in real-time.
Collapse
Affiliation(s)
- Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Truc Thuy Pham
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Christian Baker
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Michelle T. Ma
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4 Floor, Lambeth Wing St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|