1
|
Lv YH, Chen X, Yao J, Zhu XF, Wu DJ. Complex amplitude encoding metalens realizing arbitrary ultrasonic needle beams. ULTRASONICS 2025; 152:107645. [PMID: 40120431 DOI: 10.1016/j.ultras.2025.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Extending the depth of focus is necessary in many scenarios. Recent progress in ultrasonic applications demands various kinds of foci and poses challenges to science and technologies. Here, we propose to connect individual foci forming an ultrasonic needle beam (UNB) through complex amplitude encoding with super-units. Two phase distributions are encoded into one metalens through super-units, which realizes a complex-amplitude modulation and achieve multifocal points in space. The performance of the metalens can be improved by adjusting the parameters of super-units. Both simulations and experiments have demonstrated that the metalens designed through the proposed method can efficiently produce single or twin UNBs. Our work has potential applications in biomedical treatment and imaging, remote communication, and nondestructive detection.
Collapse
Affiliation(s)
- Yu-Hang Lv
- Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xing Chen
- Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Jie Yao
- Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; MOE Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093, China; Key Laboratory of State Manipulation and Advanced Materials in Provincial Universities, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Xing-Feng Zhu
- Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; MOE Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory of NSLSCS, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Da-Jian Wu
- Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; Ministry of Education Key Laboratory of NSLSCS, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of State Manipulation and Advanced Materials in Provincial Universities, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408653. [PMID: 39749384 PMCID: PMC11809411 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| |
Collapse
|
3
|
Cho S, Kim M, Ahn J, Kim Y, Lim J, Park J, Kim HH, Kim WJ, Kim C. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo. Nat Commun 2024; 15:1444. [PMID: 38365897 PMCID: PMC10873420 DOI: 10.1038/s41467-024-45273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.
Collapse
Affiliation(s)
- Seonghee Cho
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minsu Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeonggeun Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeongwoo Park
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
4
|
Li C, Qi H, Han X, Zhao X, Zhang Y, Huang J, Peng W, Chen K. Ultrahigh-speed phase demodulation of a Fabry-Perot sensor based on fiber array parallel spectral detection. OPTICS LETTERS 2024; 49:714-717. [PMID: 38300097 DOI: 10.1364/ol.511903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
An ultrahigh-speed phase demodulation system was designed for the Fabry-Perot (F-P) interferometric sensor based on fiber array parallel spectral detection. A high-power amplified spontaneous emission (ASE) source served as the broadband detection light. The spectrum generated by the dispersion of the F-P interference light through an arrayed waveguide grating (AWG) was incident into the fiber array and was detected in parallel by 48 photodiodes. The 48-channel signals were acquired synchronously and processed in real time to achieve a phase demodulation for the F-P cavity at 200 kHz. As a result, a low-resolution spectral detection and demodulation system was constructed with high speed. The length demodulation range of the F-P cavity was 60-700 µm, and the demodulation resolution was as high as 0.22 nm. The designed high-sensitivity demodulator is expected to be used for ultrasonic and high-frequency vibration detection.
Collapse
|
5
|
Zhu L, Cao H, Ma J, Wang L. Optical ultrasound sensors for photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11523. [PMID: 38303991 PMCID: PMC10831871 DOI: 10.1117/1.jbo.29.s1.s11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Significance Photoacoustic (PA) imaging is an emerging biomedical imaging modality that can map optical absorption contrast in biological tissues by detecting ultrasound signal. Piezoelectric transducers are commonly used in PA imaging to detect the ultrasound signals. However, piezoelectric transducers suffer from low sensitivity when the dimensions are reduced and are easily influenced by electromagnetic interference. To avoid these limitations, various optical ultrasound sensors have been developed and shown their great potential in PA imaging. Aim Our study aims to summarize recent progress in optical ultrasound sensor technologies and their applications in PA imaging. Approach The commonly used optical ultrasound sensing techniques and their applications in PA systems are reviewed. The technical advances of different optical ultrasound sensors are summarized. Results Optical ultrasound sensors can provide wide bandwidth and improved sensitivity with miniatured size, which enables their applications in PA imaging. Conclusions The optical ultrasound sensors are promising transducers in PA imaging to provide higher-resolution images and can be used in new applications with their unique advantages.
Collapse
Affiliation(s)
- Liying Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Hongming Cao
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jun Ma
- Nanfang Hospital, Southern Medical University, Department of Burns, Guangzhou, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Jiang D, Zhu L, Tong S, Shen Y, Gao F, Gao F. Photoacoustic imaging plus X: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11513. [PMID: 38156064 PMCID: PMC10753847 DOI: 10.1117/1.jbo.29.s1.s11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Significance Photoacoustic (PA) imaging (PAI) represents an emerging modality within the realm of biomedical imaging technology. It seamlessly blends the wealth of optical contrast with the remarkable depth of penetration offered by ultrasound. These distinctive features of PAI hold tremendous potential for various applications, including early cancer detection, functional imaging, hybrid imaging, monitoring ablation therapy, and providing guidance during surgical procedures. The synergy between PAI and other cutting-edge technologies not only enhances its capabilities but also propels it toward broader clinical applicability. Aim The integration of PAI with advanced technology for PA signal detection, signal processing, image reconstruction, hybrid imaging, and clinical applications has significantly bolstered the capabilities of PAI. This review endeavor contributes to a deeper comprehension of how the synergy between PAI and other advanced technologies can lead to improved applications. Approach An examination of the evolving research frontiers in PAI, integrated with other advanced technologies, reveals six key categories named "PAI plus X." These categories encompass a range of topics, including but not limited to PAI plus treatment, PAI plus circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. Results After conducting a comprehensive review of the existing literature and research on PAI integrated with other technologies, various proposals have emerged to advance the development of PAI plus X. These proposals aim to enhance system hardware, improve imaging quality, and address clinical challenges effectively. Conclusions The progression of innovative and sophisticated approaches within each category of PAI plus X is positioned to drive significant advancements in both the development of PAI technology and its clinical applications. Furthermore, PAI not only has the potential to integrate with the above-mentioned technologies but also to broaden its applications even further.
Collapse
Affiliation(s)
- Daohuai Jiang
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Fujian Normal University, College of Photonic and Electronic Engineering, Fuzhou, China
| | - Luyao Zhu
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Shangqing Tong
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Yuting Shen
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Feng Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Fei Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
7
|
Nagli M, Moisseev R, Suleymanov N, Kaminski E, Hazan Y, Gelbert G, Goykhman I, Rosenthal A. Silicon photonic acoustic detector (SPADE) using a silicon nitride microring resonator. PHOTOACOUSTICS 2023; 32:100527. [PMID: 37645254 PMCID: PMC10461202 DOI: 10.1016/j.pacs.2023.100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Silicon photonics is an emerging platform for acoustic sensing, offering exceptional miniaturization and sensitivity. While efforts have focused on silicon-based resonators, silicon nitride resonators can potentially achieve higher Q-factors, further enhancing sensitivity. In this work, a 30 µm silicon nitride microring resonator was fabricated and coated with an elastomer to optimize acoustic sensitivity and signal fidelity. The resonator was characterized acoustically, and its capability for optoacoustic tomography was demonstrated. An acoustic bandwidth of 120 MHz and a noise-equivalent pressure of ∼ 7 mPa/Hz1/2 were demonstrated. The spatially dependent impulse response agreed with theoretical predictions, and spurious acoustic signals, such as reverberations and surface acoustic waves, had a marginal impact. High image fidelity optoacoustic tomography of a 20 µm knot was achieved, confirming the detector's imaging capabilities. The results show that silicon nitride offers low signal distortion and high-resolution optoacoustic imaging, proving its versatility for acoustic imaging applications.
Collapse
Affiliation(s)
- Michael Nagli
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ron Moisseev
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Nathan Suleymanov
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Eitan Kaminski
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Gil Gelbert
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ilya Goykhman
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| |
Collapse
|