1
|
Okamoto K, Hasegawa M, Piriyaprasath K, Kakihara Y, Saeki M, Yamamura K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:231-241. [PMID: 34815817 PMCID: PMC8593658 DOI: 10.1016/j.jdsr.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic pain in temporomandibular disorder (TMD) is a common health problem. Cumulating evidence indicates that the etiology of TMD pain is complex with multifactorial experience that could hamper the developments of treatments. Preclinical research is a resource to understand the mechanism for TMD pain, whereas limitations are present as a disease-specific model. It is difficult to incorporate multiple risk factors associated with the etiology that could increase pain responses into a single animal. This article introduces several rodent models which are often employed in the preclinical studies and discusses their validities for TMD pain after the elucidations of the neural mechanisms based on the clinical reports. First, rodent models were classified into two groups with or without inflammation in the deep craniofacial tissues. Next, the characteristics of each model and the procedures to identify deep craniofacial pain were discussed. Emphasis was directed on the findings of the effects of chronic psychological stress, a major risk factor for chronic pain, on the deep craniofacial nociception. Preclinical models have provided clinically relevant information, which could contribute to better understand the basis for TMD pain, while efforts are still required to bridge the gap between animal and human studies.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan.,Division of Dental Clinical Education, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| |
Collapse
|
2
|
Li B, Lu L, Tan X, Zhong M, Guo Y, Yi X. Peripheral metabotropic glutamate receptor subtype 5 contributes to inflammation-induced hypersensitivity of the rat temporomandibular joint. J Mol Neurosci 2013; 51:710-8. [PMID: 23807708 DOI: 10.1007/s12031-013-0052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/13/2013] [Indexed: 01/15/2023]
Abstract
Temporomandibular disorders (TMD) comprise an assortment of clinical conditions characterized by pain in the temporomandibular joint (TMJ). TMD patients have a variety of symptoms, including jaw movement disorder and TMJ pain. Metabotropic glutamate receptor subtype 5 (mGluR5) was reported to be involved in pain processing in several animal models of neuropathic and inflammatory pain. In this study, the head withdrawal threshold and mGluR5 expression were investigated in rats with complete Freund's adjuvant (CFA)-induced TMJ inflammatory pain. CFA injection into the TMJ significantly decreased the mechanical head withdrawal thresholds relative to vehicle injection, and the effects were blocked by pre-injection of 2-methyl-6-(phenylethynyl)-pyridine (MPEP). mGluR5 expression in the trigeminal ganglion was predominantly increased in the CFA-injected group compared with the normal control group. Pretreatment with MPEP, a selective mGluR5 antagonist, reduced mGluR5 expression in the trigeminal ganglion compared with the CFA group, as measured by immunohistochemistry, western blotting, and RT-PCR. Significant differences in the proportion or intensity of mGluR5 expression were found in animals with inflammation versus control animals at the examined time point. These findings indicate a role for peripheral mGluR5 in CFA-induced nociceptive behavior and TMJ inflammation. Peripheral application of mGluR5 antagonists could provide therapeutic benefits for inflammatory TMJ pain.
Collapse
Affiliation(s)
- Bo Li
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, China
| | | | | | | | | | | |
Collapse
|
4
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
5
|
Jeske NA, Patwardhan AM, Henry MA, Milam SB. Fibronectin stimulates TRPV1 translocation in primary sensory neurons. J Neurochem 2008; 108:591-600. [PMID: 19012739 DOI: 10.1111/j.1471-4159.2008.05779.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) molecules are highly variable in their composition and receptor recognition. Their ubiquitous expression profile has been linked to roles in cell growth, differentiation, and survival. Recent work has identified certain ECM molecules that serve as dynamic signal modulators, versus the more-recognized role of chronic modulation of signal transduction. In this study, we investigated the role that fibronectin (FN) plays in the dynamic modulation of transient receptor potential family V type 1 receptor (TRPV1) translocation to the plasma membrane in trigeminal ganglia (TG) sensory neurons. Confocal immunofluorescence analyses identify co-expression of the TRPV1 receptor with integrin subunits that bind FN. TG neurons cultured upon or treated with FN experienced a leftward shift in the EC(50) of capsaicin-stimulated neuropeptide release. This FN-induced increase in TRPV1 sensitivity to activation is coupled by an increase in plasma membrane expression of TRPV1, as well as an increase in tyrosine phosphorylation of TRPV1 in TG neurons. Furthermore, TG neurons cultured on FN demonstrated an increase in capsaicin-mediated Ca(2+) accumulation relative to neurons cultured on poly-D-lysine. Data presented from these studies indicate that FN stimulates tyrosine-phosphorylation-dependent translocation of the TRPV1 receptor to the plasma membrane, identifying FN as a critical component of the ECM capable of sensory neuron sensitization.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
6
|
Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Exp Neurol 2008; 214:209-18. [PMID: 18778706 DOI: 10.1016/j.expneurol.2008.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 11/23/2022]
Abstract
To evaluate the involvement of paratrigeminal nucleus (Pa5) nociceptive neurons in temporomandibular joint (TMJ) inflammation-induced pain and its autonomic correlates, we conducted behavioral, single unit recording and Fos immunohistochemical studies in anesthetized rats. Nocifensive behaviors to mechanical, heat or cold stimulation of the lateral face over the TMJ region were significantly enhanced in the TMJ-inflamed rats for 10-14 days after injection of complete Freund's adjuvant (CFA) into the TMJ and gradually decreased at the end of the 14-day observation period. Lowering of the nocifensive threshold in TMJ-inflamed rats lasted longer in vagus nerve-transected rats than vagus nerve-intact rats. A large number of Fos-like immunoreactive (LI) cells were observed in the Pa5, and half of them were retrogradely labeled with Fluorogold (FG) injected into the parabrachial nucleus. Background activity of Pa5 wide dynamic range and nociceptive specific neurons was significantly higher in the TMJ-inflamed rats when compared with controls. Responses to mechanical stimuli were significantly higher in NS neurons in the TMJ-inflamed rats. All thermal responsive Pa5 neurons were exclusively sensitive to cold and the response to cold was significantly higher in the TMJ-inflamed rats compared with control rats. Vagus nerve stimulation significantly decreased responses to mechanical and cold stimuli as well as the background activity in TMJ-treated rats but not in TMJ-untreated rats. The present findings suggest that populations of Pa5 neurons are nociceptive and involved in TMJ inflammation-induced pain as well as in autonomic processes related to TMJ pain.
Collapse
|
7
|
Tashiro A, Okamoto K, Milam SB, Bereiter DA. Differential effects of estradiol on encoding properties of TMJ units in laminae I and V at the spinomedullary junction in female rats. J Neurophysiol 2007; 98:3242-53. [PMID: 17928557 DOI: 10.1152/jn.00677.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether estrogen status modulated dorsal horn neural activity relevant to temporomandibular joint (TMJ) processing single units were recorded in superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C1-2) junction of ovariectomized (OvX) female rats under barbiturate anesthesia after 17beta-estradiol (E2) treatment for 2 days. E2 dose-dependently enhanced the response to intra-TMJ stimulation by adenosine triphosphate (ATP) of neurons classified as nociceptive specific (NS), but not wide dynamic range (WDR), in superficial laminae. ATP caused similar responses among NS and WDR neurons from deep laminae in all groups. By contrast, the cutaneous receptive field areas of WDR, but not NS, units in superficial and deep laminae were enlarged in high E2-treated (HE2) compared with low E2-treated (LE2) females. Units from untreated or vehicle-treated male rats displayed responses similar to those of LE2 females. TMJ units in superficial laminae from females were more likely to receive convergent cutaneous input and respond to jaw movement than males, independent of E2 treatment. Western blot analysis revealed similar levels of P2X2 and P2X3 receptor protein in Vc/C1-2 or trigeminal ganglion samples in all groups. Immunohistochemistry revealed dense terminal labeling for P2X3 receptors in superficial laminae and moderate labeling in deep laminae at the Vc/C1-2 junction. These data indicated a significant linkage between estrogen status and the magnitude of articular input evoked by ATP from TMJ neurons in the superficial laminae at the Vc/C1-2 junction, whereas estrogenic modulation of TMJ neurons in deep laminae affected only the convergent input from overlying facial skin.
Collapse
Affiliation(s)
- A Tashiro
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|