1
|
Lo Presti E, Cupaioli F, Scimeca D, Unti E, Di Martino V, Daidone R, Amata M, Scibetta N, Soucie E, Meraviglia S, Iovanna J, Dusetti N, De Gaetano A, Merelli I, Di Mitri R. The pancreatic tumor microenvironment of treatment-naïve patients causes a functional shift in γδ T cells, impairing their anti-tumoral defense. Oncoimmunology 2025; 14:2466301. [PMID: 39945298 PMCID: PMC11834455 DOI: 10.1080/2162402x.2025.2466301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a unique challenge for researchers due to its late diagnosis caused by vague symptoms and lack of early detection markers. Additionally, PDAC is characterized by an immunosuppressive microenvironment (TME), making it a difficult tumor to treat. While γδ T cells have shown potential for anti-tumor activity, conflicting studies exist regarding their effectiveness in pancreatic cancer. This study aims to explore the hypothesis that the PDAC TME hinders the anti-tumor capabilities of γδ T cells through blockade of cytotoxic functions. For this reason, we chose to enroll PDAC treatment-naive patients to avoid the possibility of therapy modifying the TME. By flow cytometry, our research findings indicate that the presence of γδ T cells among CD45+ cells in tumor tissue is lower compared to CD66+ cells, but higher than in blood. Circulating Vδ1 T cells exhibit a terminal effector memory phenotype (TEMRA) more than Vδ2 T cells. Interestingly, Vδ1 and Vδ2 T cells appear to be more prevalent at different stages of tumor development. In our in vitro culture using conditioned medium derived from Patient-derived organoids ;(PDOs), we observed a shift in expression markers in γδ T cells of healthy individuals toward an activation and exhaustion phenotype, as confirmed by scRNA-seq analysis extracted from a public database. A deeper understanding of γδ T cells in PDAC could be valuable for developing novel therapies aimed at mitigating the impact of the pancreatic tumor microenvironment on this cell population.
Collapse
Affiliation(s)
- Elena Lo Presti
- National Research Council of Italy (CNR), Institute for Biomedical Research and Innovation (IRIB), Palermo, Italy
| | - Francesca Cupaioli
- National Research Council of Italy, Bioinformatics Research Unit, Institute for Biomedical Technologies Segrate, Milan, Italy
| | - Daniela Scimeca
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Elettra Unti
- ‘Anatomic-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Vincenzo Di Martino
- Immunohaematology and Transfusion Medicine Unit, Imperia Hospital ASL1 Imperiese, Imperia, Italy
| | - Rossella Daidone
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Michele Amata
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Nunzia Scibetta
- ‘Anatomic-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Erinn Soucie
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Juan Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Andrea De Gaetano
- National Research Council of Italy (CNR), Institute for Biomedical Research and Innovation (IRIB), Palermo, Italy
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti, ” BioMatLab (Biomathematics Laboratory), Rome, Italy
- Department of Mathematics, Mahidol University, Bangkok, Thailand
| | - Ivan Merelli
- National Research Council of Italy, Bioinformatics Research Unit, Institute for Biomedical Technologies Segrate, Milan, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| |
Collapse
|
2
|
Wistuba‐Hamprecht K, Oberg H, Wesch D. Function and Spatial Organization of Tumor-Invasive Human γδ T Cells-What Do We Know? Eur J Immunol 2025; 55:e202451075. [PMID: 39623788 PMCID: PMC11739682 DOI: 10.1002/eji.202451075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
Human gammadelta (γδ) T cells not only infiltrate or reside in healthy tissues but also enter solid cancers. A large body of evidence suggests that γδ T cells can exert potent anti-tumor effects, although conflicting or unfavorable effects have been reported in some cancer entities. Infiltration patterns are key to understanding the complexity of the tumor microenvironment (TME) and its interplay with γδ T cells. The limited data available describe different γδ T cell subsets that are located in different areas around and within tumors. Tumor-infiltrating γδ lymphocytes (γδ TIL) exert cytotoxicity, for example, via the CD95- or TRAIL-axis, produce high amounts of granzymes, and after their activation, tumor necrosis factor (TNF)-α or IFN-γ and express immune checkpoint receptors. Under certain conditions, γδ T cell subsets can express low amounts of IL-17 and seem to contribute to immune regulation/suppression. A polarization of γδ T cells can be influenced by the TME. Inflammatory cytokines, growth factors, or tumor promoters can suppress γδ T cell functionality or even push them toward tumor promotion. To avoid this and to exploit the unique features of γδ T cell-mediated anti-cancer and immune-orchestrating capabilities in future immune therapy approaches, a growing body of preclinical but also clinical studies can be observed.
Collapse
Affiliation(s)
- Kilian Wistuba‐Hamprecht
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
- DKFZ Hector Cancer InstituteUniversity Medical Center MannheimMannheimGermany
| | - Hans‐Heinrich Oberg
- Institute of ImmunologyUniversity Medical Center Schleswig‐Holstein and Christian‐Albrechts University of KielKielGermany
| | - Daniela Wesch
- Institute of ImmunologyUniversity Medical Center Schleswig‐Holstein and Christian‐Albrechts University of KielKielGermany
| |
Collapse
|
3
|
Kayser C, Brauer A, Susanne S, Wandmacher AM. The challenge of making the right choice: patient avatars in the era of cancer immunotherapies. Front Immunol 2023; 14:1237565. [PMID: 37638045 PMCID: PMC10449253 DOI: 10.3389/fimmu.2023.1237565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.
Collapse
Affiliation(s)
- Charlotte Kayser
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annika Brauer
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Sebens Susanne
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Anna Maxi Wandmacher
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
- Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Gonnermann D, Oberg HH, Lettau M, Peipp M, Bauerschlag D, Sebens S, Kabelitz D, Wesch D. Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses γδ T Cell Proliferation but Not Their Cytotoxicity. Front Immunol 2020; 11:1328. [PMID: 32695112 PMCID: PMC7338555 DOI: 10.3389/fimmu.2020.01328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an immunosuppressive tumor microenvironment with a dense desmoplastic stroma. The expression of β-galactoside-binding protein galectin-3 is regarded as an intrinsic tumor escape mechanism for inhibition of tumor-infiltrating T cell function. In this study, we demonstrated that galectin-3 is expressed by PDAC and by γδ or αβ T cells but is only released in small amounts by either cell population. Interestingly, large amounts of galectin-3 were released during the co-culture of allogeneic in vitro expanded or allogeneic or autologous resting T cells with PDAC cells. By focusing on the co-culture of tumor cells and γδ T cells, we observed that knockdown of galectin-3 in tumor cells identified these cells as the source of secreted galectin-3. Galectin-3 released by tumor cells or addition of physiological concentrations of recombinant galectin-3 did neither further inhibit the impaired γδ T cell cytotoxicity against PDAC cells nor did it induce cell death of in vitro expanded γδ T cells. Initial proliferation of resting peripheral blood and tumor-infiltrating Vδ2-expressing γδ T cells was impaired by galectin-3 in a cell-cell-contact dependent manner. The interaction of galectin-3 with α3β1 integrin expressed by Vδ2 γδ T cells was involved in the inhibition of γδ T cell proliferation. The addition of bispecific antibodies targeting γδ T cells to PDAC cells enhanced their cytotoxic activity independent of the galectin-3 release. These results are of high relevance in the context of an in vivo application of bispecific antibodies which can enhance cytotoxic activity of γδ T cells against tumor cells but probably not their proliferation when galectin-3 is present. In contrast, adoptive transfer of in vitro expanded γδ T cells together with bispecific antibodies will enhance γδ T cell cytotoxicity and overcomes the immunosuppressive function of galectin-3.
Collapse
Affiliation(s)
- Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, UKSH, Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Jonescheit H, Oberg HH, Gonnermann D, Hermes M, Sulaj V, Peters C, Kabelitz D, Wesch D. Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδ T Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells 2020; 9:E1140. [PMID: 32384638 PMCID: PMC7290398 DOI: 10.3390/cells9051140] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant gastrointestinal disease. The enzyme indoleamine-2,3-dioxgenase (IDO) is often overexpressed in PDAC and its downstream metabolite kynurenine has been reported to inhibit T cell activation and proliferation. Since γδ T cells are of high interest for T cell-based immunotherapy against PDAC, we studied the impact of IDO and kynurenine on γδ T cell cytotoxicity against PDAC cells. METHODS IDO expression was determined in PDAC cells by flow cytometry and Western blot analysis. PDAC cells were cocultured with γδ T cells in medium or were stimulated with phosphorylated antigens or bispecific antibody in the presence or absence of IDO inhibitors. Additionally, γδ T cells were treated with recombinant kynurenine. Read-out assays included degranulation, cytotoxicity and cytokine measurement as well as cell cycle analysis. RESULTS Since IDO overexpression was variable in PDAC, IDO inhibitors improved γδ T cell cytotoxicity only against some but not all PDAC cells. γδ T cell degranulation and cytotoxicity were significantly decreased after their treatment with recombinant kynurenine. CONCLUSIONS Bispecific antibody drastically enhanced γδ T cell cytotoxicity against all PDAC cells, which can be further enhanced by IDO inhibitors against several PDAC cells, suggesting a striking heterogeneity in PDAC escape mechanisms towards γδ T cell-mediated anti-tumor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, D-24105 Kiel, Germany; (H.J.); (H.-H.O.); (D.G.); (M.H.); (V.S.); (C.P.); (D.K.)
| |
Collapse
|
9
|
Beucke N, Wesch D, Oberg HH, Peters C, Bochem J, Weide B, Garbe C, Pawelec G, Sebens S, Röcken C, Hashimoto H, Löffler MW, Nocerino P, Kordasti S, Kabelitz D, Schilbach K, Wistuba-Hamprecht K. Pitfalls in the characterization of circulating and tissue-resident human γδ T cells. J Leukoc Biol 2020; 107:1097-1105. [PMID: 31967358 DOI: 10.1002/jlb.5ma1219-296r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023] Open
Abstract
Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles.
Collapse
Affiliation(s)
- Nicola Beucke
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jonas Bochem
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Paola Nocerino
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Shahram Kordasti
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | | |
Collapse
|
10
|
Oberg HH, Janitschke L, Sulaj V, Weimer J, Gonnermann D, Hedemann N, Arnold N, Kabelitz D, Peipp M, Bauerschlag D, Wesch D. Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. J Leukoc Biol 2019; 107:1081-1095. [PMID: 31833593 PMCID: PMC7318294 DOI: 10.1002/jlb.5ma1119-265r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer displays the highest mortality of all gynecological tumors. A relapse of the disease even after successful surgical treatment is a significant problem. Resistance against the current platinum‐based chemotherapeutic standard regime requires a detailed ex vivo immune profiling of tumor‐infiltrating cells and the development of new therapeutic strategies. In this study, we phenotypically and functionally characterize tumor cells and autologous tumor‐derived αβ and γδ T lymphocyte subsets. Tumor‐infiltrating (TIL) and tumor‐ascites lymphocytes (TAL) were ex vivo isolated out of tumor tissue and ascites, respectively, from high‐grade ovarian carcinoma patients (FIGO‐stage IIIa‐IV). We observed an increased γδ T cell percentage in ascites compared to tumor‐tissue and blood of these patients, whereas CD8+ αβ T cells were increased within TAL and TIL. The number of Vδ1 and non‐Vδ1/Vδ2‐expressing γδ T cells was increased in the ascites and in the tumor tissue compared to the blood of the same donors. Commonly in PBL, the Vγ9 chain of the γδ T cell receptor is usually associated exclusively with the Vδ2 chain. Interestingly, we detected Vδ1 and non‐Vδ1/Vδ2 T cells co‐expressing Vγ9, which is so far not described for TAL and TIL. Importantly, our data demonstrated an expression of human epidermal growth factor receptor (HER)‐2 on high‐grade ovarian tumors, which can serve as an efficient tumor antigen to target CD3 TIL or selectively Vγ9‐expressing γδ T cells by bispecific antibodies (bsAbs) to ovarian cancer cells. Our bsAbs efficiently enhance cytotoxicity of TIL and TAL against autologous HER‐2‐expressing ovarian cells.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Lisa Janitschke
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Vjola Sulaj
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
11
|
Tawfik D, Groth C, Gundlach JP, Peipp M, Kabelitz D, Becker T, Oberg HH, Trauzold A, Wesch D. TRAIL-Receptor 4 Modulates γδ T Cell-Cytotoxicity Toward Cancer Cells. Front Immunol 2019; 10:2044. [PMID: 31555275 PMCID: PMC6722211 DOI: 10.3389/fimmu.2019.02044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Acquired immune evasion is one of the mechanisms that contributes to the dismal prognosis of cancer. Recently, we observed that different γδ T cell subsets as well as CD8+ αβ T cells infiltrate the pancreatic tissue. Interestingly, the abundance of γδ T cells was reported to have a positive prognostic impact on survival of cancer patients. Since γδ T cells utilize TNF-related apoptosis inducing ligand (TRAIL) for killing of tumor cells in addition to granzyme B and perforin, we investigated the role of the TRAIL-/TRAIL-R system in γδ T cell-cytotoxicity toward pancreatic ductal adenocarcinoma (PDAC) and other cancer cells. Coculture of the different cancer cells with γδ T cells resulted in a moderate lysis of tumor cells. The lysis of PDAC Colo357 cells was independent of TRAIL as it was not inhibited by the addition of neutralizing anti-TRAIL antibodies or TRAIL-R2-Fc fusion protein. In accordance, knockdown (KD) of death receptors TRAIL-R1 or TRAIL-R2 in Colo357 cells had no effect on γδ T cell-mediated cytotoxicity. However, KD of decoy receptor TRAIL-R4, which robustly enhanced TRAIL-induced apoptosis, interestingly, almost completely abolished the γδ T cell-mediated lysis of these tumor cells. This effect was associated with a reduced secretion of granzyme B by γδ T cells and enhanced PGE2 production as a result of increased expression level of synthetase cyclooxygenase (COX)-2 by TRAIL-R4-KD cells. In contrast, knockin of TRAIL-R4 decreased COX-2 expression. Importantly, reduced release of granzyme B by γδ T cells cocultured with TRAIL-R4-KD cells was partially reverted by bispecific antibody [HER2xCD3] and led in consequence to enhanced lysis of tumor cells. Likewise, inhibition of COX-1 and/or COX-2 partially enhanced γδ T cell-mediated lysis of TRAIL-R4-KD cells. The combination of bispecific antibody and COX-inhibitor completely restored the lysis of TRAIL-R4-KD cells by γδ T cells. In conclusion, we uncovered an unexpected novel role of TRAIL-R4 in tumor cells. In contrast to its known pro-tumoral, anti-apoptotic function, TRAIL-R4 augments the anti-tumoral cytotoxic activity of γδ T cells.
Collapse
Affiliation(s)
- Doaa Tawfik
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christopher Groth
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jan-Paul Gundlach
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
12
|
Oberg HH, Peters C, Kabelitz D, Wesch D. Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods Enzymol 2019; 631:429-441. [PMID: 31948561 DOI: 10.1016/bs.mie.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enhancement of immune responses against tumor cells is a main focus of cancer immunotherapy. Immunotherapeutic approaches comprise a broad range of clinical applications including adjuvant therapies, check point inhibitors, cellular therapies, oncolytic viruses or targeted biologics such as bispecific antibodies. The usage of bispecific antibodies is one promising approach to enhance cytotoxicity and to selectively target effector cells to tumor-associated antigens. Here, we discuss the real-time cell analysis system as a suitable in vitro method to determine the interaction of tumor cell with effector cells alone or within a heterogeneous mixture of immune cells in peripheral blood or within tumor-infiltrating cells. The determination of cytotoxic effector cell activity using the real-time cell analyzer is highly useful to monitor the dynamic cellular interplay over extended periods of time.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany.
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
13
|
Oberg HH, Wesch D, Kalyan S, Kabelitz D. Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Front Immunol 2019; 10:1690. [PMID: 31379875 PMCID: PMC6657370 DOI: 10.3389/fimmu.2019.01690] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Apart from their activity in combating infections, neutrophils play an important role in regulating the tumor microenvironment. Neutrophils can directly kill (antibody-coated) cancer cells, and support other immune anti-tumoral strategies. On the other hand, neutrophils can also exert pro-tumorigenic activities via the production of factors which promote cancer growth, angiogenesis and metastasis formation. The balance of anti- and pro-cancer activity is influenced by the particularly delicate interplay that exists between neutrophils and T lymphocytes. In murine models, it has been reported that γδ T cells are a major source of IL-17 that drives the recruitment and pro-tumorigenic differentiation of neutrophils. This, however, contrasts with the well-studied anti-tumor activity of γδ T cells in experimental models and the anti-tumor activity of human γδ T cells. In this article, we first review the reciprocal interactions between neutrophils, tumor cells and T lymphocytes with a special focus on their interplay with γδ T cells, followed by the presentation of our own recent results. We have previously shown that zoledronic acid (ZOL)-activated neutrophils inhibit γδ T-cell proliferation due to the production of reactive oxygen species, arginase-1 and serine proteases. We now demonstrate that killing of ductal pancreatic adenocarcinoma (PDAC) cells by freshly isolated resting human γδ T cells was reduced in the presence of neutrophils and even more pronounced so after activation of neutrophils with ZOL. In contrast, direct T-cell receptor-dependent activation by γδ T cell-specific pyrophosphate antigens or by bispecific antibodies enhanced the cytotoxic activity and cytokine/granzyme B production of resting human γδ T cells, thereby overriding the suppression by ZOL-activated neutrophils. Additionally, the coculture of purified neutrophils with autologous short-term expanded γδ T cells enhanced rather than inhibited γδ T-cell cytotoxicity against PDAC cells. Purified neutrophils alone also exerted a small but reproducible lysis of PDAC cells which was further enhanced in the presence of γδ T cells. The latter set-up was associated with improved granzyme B and IFN-γ release which was further increased in the presence of ZOL. Our present results demonstrate that the presence of neutrophils can enhance the killing capacity of activated γδ T cells. We discuss these results in the broader context of regulatory interactions between neutrophils and T lymphocytes.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shirin Kalyan
- Clinical Research Development Laboratory, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Peters C, Meyer A, Kouakanou L, Feder J, Schricker T, Lettau M, Janssen O, Wesch D, Kabelitz D. TGF-β enhances the cytotoxic activity of Vδ2 T cells. Oncoimmunology 2018; 8:e1522471. [PMID: 30546961 DOI: 10.1080/2162402x.2018.1522471] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
TGF-β is a pleiotropic cytokine with multiple roles in immunity. Apart from its suppressive activity, TGF-β is a driving cytokine in the differentiation of induced regulatory T cells (iTreg) but also in the polarization of interleukin-9 (IL-9) producing T helper 9 (Th9) T cells. Human Vδ2 expressing γδ T cells exert potent cytotoxicity towards a variety of solid tumor and leukemia/lymphoma target cells and thus are in the focus of current strategies to develop cell-based immunotherapies. Here we report that TGF-β unexpectedly augments the cytotoxic effector activity of short-term expanded Vδ2 T cells when purified γδ T cells are activated with specific pyrophosphate antigens and IL-2 or IL-15 in the presence of TGF-β. TGF-β up-regulates the expression of CD54, CD103, interferon-γ, IL-9 and granzyme B in γδ T cells while CD56 and CD11a/CD18 are down-regulated. Moreover, we show that CD103 (αE/β7 integrin) is recruited to the immunological synapse in γδ T cells. Increased cytotoxic activity of TGF-β-exposed γδ T cells is reduced by anti-CD103 and further diminished upon additional anti-CD11a antibody treatment, pointing to a role of cellular adhesion in the enhanced cytolytic activity. Furthermore, magnetically sorted CD103-positive Vδ2 T cells exhibit superior cytolytic activity. In view of the importance of CD103 for tissue homing of lymphocytes, our results suggest that adoptive transfer of CD103-expressing Vδ2 T cells might favor their homing to solid tumors.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Annika Meyer
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Julia Feder
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tim Schricker
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
Affiliation(s)
- Claudia Juraske
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Piyamaporn Wipa
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anna Morath
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University Hospital “José de San Martin”, University of Buenos Aires, Buenos Aires, Argentina
| | - Frederike A. Hartl
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
- Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Oberg HH, Kellner C, Gonnermann D, Sebens S, Bauerschlag D, Gramatzki M, Kabelitz D, Peipp M, Wesch D. Tribody [(HER2) 2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Front Immunol 2018; 9:814. [PMID: 29725336 PMCID: PMC5916959 DOI: 10.3389/fimmu.2018.00814] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.
Collapse
Affiliation(s)
- Hans H Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Clinic of Gynecology and Obstetrics, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D. In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncoimmunology 2017; 6:e1358839. [PMID: 29147621 DOI: 10.1080/2162402x.2017.1358839] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite aggressive treatment regimens based on surgery and radiochemotherapy, the prognosis of patients with grade IV glioblastoma multiforme (GBM) remains extremely poor, calling for alternative options such as immunotherapy. Immunological mechanisms including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system play an important role in tumor immune surveillance and targeting the NKG2D system might be beneficial. However, before considering any kind of immunotherapy, a precise characterization of the immune system is important, particularly in GBM patients where conventional therapies with impact on the immune system are frequently co-administered. Here we performed an in-depth immunophenotyping of GBM patients and age-matched healthy controls and analyzed NKG2D ligand expression on primary GBM cells ex vivo. We report that GBM patients have a compromised innate immune system irrespective of steroid (dexamethasone) medication. However, dexamethasone drastically reduced the number of immune cells in the blood of GBM patients. Moreover, higher counts of immune cells influenced by dexamethasone like CD45+ lymphocytes and non-Vδ2 γδ T cells were associated with better overall survival. Higher levels of NKG2D ligands on primary GBM tumor cells were observed in patients who received radiochemotherapy, pointing towards increased immunogenic potential of GBM cells following standard radiochemotherapy. This study sheds light on how steroids and radiochemotherapy affect immune cell parameters of GBM patients, a pre-requisite for the development of new therapeutic strategies targeting the immune system in these patients.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Charlotte Flüh
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany.,Dept. of Oto-Rhino-Laryngology, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Schleswig-Hostein, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Jaydeep Bhat
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Stefanie Luecke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Michael Synowitz
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Janka Held-Feindt
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| |
Collapse
|