1
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
2
|
Wiley MB, Bauer J, Alvarez V, Mehrotra K, Cheng W, Kolics Z, Giarrizzo M, Ingle K, Bialkowska AB, Jung B. Activin A signaling stimulates neutrophil activation and macrophage migration in pancreatitis. Sci Rep 2024; 14:9382. [PMID: 38654064 PMCID: PMC11039671 DOI: 10.1038/s41598-024-60065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol Res (Camb) 2023; 12:954-963. [PMID: 37915491 PMCID: PMC10615826 DOI: 10.1093/toxres/tfad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this investigation was to investigate the protective effects of fullerene C60 nanoparticle against pancreatic damage experimentally induced by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Fullerene C60 nanoparticle was administered to rats 5 times a week by oral gavage (o.g) at 1.7 mg/kg bw 7 days after DMBA administration. 60 Wistar albino female rats divided to four groups; Groups: (1) Control group: Fed with standard diet; (2) Fullerene C60 group: Fullerene C60 (1.7 mg/kg bw); (3) DMBA group: DMBA (45 mg/kg bw); (4) Fullerene C60 + DMBA group: Fullerene C60 (1.7 mg/kg bw) and DMBA (45 mg/kg bw). Lipid peroxidation malondialdehyde (MDA), catalase activity (CAT) and glutathione (GSH) levels in pancreatic tissue were determined by spectrophotometer. Protein expression levels of p53, HO-1, p38-α (MAPK), Nrf-2, NF-κB and COX-2 in pancreatic tissue were determined by western blotting technique. In our findings, compared to the group given DMBA, MDA levels and p38-α, NF-κB and COX-2 levels decreased, CAT activity, GSH level, total protein density and p53, HO-1, Nrf-2 levels in the groups given fullerene C60 nanoparticle an increase in expression levels was observed. Our results showed that fullerene C60 nanoparticle may be more beneficial in preventing pancreatic damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Faculty of Science, Bingol University, Bingol, Turkey
| |
Collapse
|
4
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Therapeutic potential of chrysin nanoparticle-mediation inhibition of succinate dehydrogenase and ubiquinone oxidoreductase in pancreatic and lung adenocarcinoma. Eur J Med Res 2022; 27:172. [PMID: 36076266 PMCID: PMC9461199 DOI: 10.1186/s40001-022-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) and lung cancer are expected to represent the most common cancer types worldwide until 2030. Under typical conditions, mitochondria provide the bulk of the energy needed to sustain cell life. For that inhibition of mitochondrial complex ΙΙ (CΙΙ) and ubiquinone oxidoreductase with natural treatments may represent a promising cancer treatment option. A naturally occurring flavonoid with biological anti-cancer effects is chyrsin. Due to their improved bioavailability, penetrative power, and efficacy, chitosan–chrysin nano-formulations (CCNPs) are being used in medicine with increasing frequency. Chitosan (cs) is also regarded as a highly versatile and adaptable polymer. The cationic properties of Cs, together with its biodegradability, high adsorption capacity, biocompatibility, effect on permeability, ability to form films, and adhesive properties, are advantages. In addition, Cs is thought to be both safe and economical. CCNPs may indeed be therapeutic candidates in the treatment of pancreatic adenocarcinoma (PDAC) and lung cancer by blocking succinate ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
5
|
Crosstalk between p38 MAPK and GR Signaling. Int J Mol Sci 2022; 23:ijms23063322. [PMID: 35328742 PMCID: PMC8953609 DOI: 10.3390/ijms23063322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
The p38 MAPK is a signaling pathway important for cells to respond to environmental and intracellular stress. Upon activation, the p38 kinase phosphorylates downstream effectors, which control the inflammatory response and coordinate fundamental cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of this signaling pathway has been linked to inflammatory diseases and cancer. Secretion of glucocorticoids (GCs) is a classical endocrine response to stress. The glucocorticoid receptor (GR) is the primary effector of GCs and plays an important role in the regulation of cell metabolism and immune response by influencing gene expression in response to hormone-dependent activation. Its ligands, the GCs or steroids, in natural or synthetic variation, are used as standard therapy for anti-inflammatory treatment, severe asthma, autoimmune diseases, and several types of cancer. Several years ago, the GR was identified as one of the downstream targets of p38, and, at the same time, it was shown that glucocorticoids could influence p38 signaling. In this review, we discuss the role of the crosstalk between the p38 and GR in the regulation of gene expression in response to steroids and comprehend the importance and potential of this interplay in future clinical applications.
Collapse
|