1
|
Panagopoulou M, Panou T, Gkountakos A, Tarapatzi G, Karaglani M, Tsamardinos I, Chatzaki E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: Implementation in liquid biopsy in the era of precision medicine. Clin Epigenetics 2024; 16:178. [PMID: 39643918 PMCID: PMC11622545 DOI: 10.1186/s13148-024-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for tumor suppressor proteins which are critical regulators of the Homologous Recombination (HR) pathway, the most precise and important DNA damage response mechanism. Dysfunctional HR proteins cannot repair double-stranded DNA breaks in mammalian cells, a situation called HR deficiency. Since their identification, pathogenic variants and other alterations of BRCA1 and BRCA2 genes have been associated with an increased risk of developing mainly breast and ovarian cancer. Interestingly, HR deficiency is also detected in tumors not carrying BRCA1/2 mutations, a condition termed "BRCAness". MAIN TEXT One of the main mechanisms causing the BRCAness phenotype is the methylation of the BRCA1/2 promoters, and this epigenetic modification is associated with carcinogenesis and poor prognosis mainly among patients with breast and ovarian cancer. BRCA1 promoter methylation has been suggested as an emerging biomarker of great predictive significance, especially concerning Poly (ADP-ribose) Polymerase inhibitors (PARP inhibitor-PARPi) responsiveness, along with or beyond BRCA1/2 mutations. However, as its clinical exploitation is still insufficient, the impact of BRCA1/2 promoter methylation status needs to be further evaluated. The current review aims to gather the latest findings about the mechanisms that underline BRCA1/2 function as well as the molecular characteristics of tumors associated with BRCA1/2 defects, by focusing on DNA methylation. Furthermore, we critically analyze their translational meaning and the validity of BRCA methylation biomarkers in predicting treatment response. CONCLUSIONS We believe that BRCA1/2 methylation alone or combined with other biomarkers in a clinical setting is expected to change the scenery in prognosis and predicting treatment response in multiple cancer types and is worthy of further attention. The quantitative BRCA1 promoter methylation assessment might predict treatment response in PARPi and analysis of BRCA1/2 methylation in liquid biopsy might define patient subgroups at different time points that may benefit from PARPi. Finally, we suggest a pipeline that could be implemented in liquid biopsy to aid precision pharmacotherapy in BRCA-associated tumors.
Collapse
Grants
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece.
| | - Theodoros Panou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Anastasios Gkountakos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece
| | - Ioannis Tsamardinos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
- Department of Computer Science, University of Crete, Voutes Campus, 70013, Heraklion, Greece
- Institute of Applied and Computational Mathematics, 70013, Heraklion, Greece
- JADBio Gnosis Data Analysis (DA) S.A., Science and Technology Park of Crete (STEPC), 70013, Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
| |
Collapse
|
2
|
Ni Z, Kundu P, McKean DF, Wheeler W, Albanes D, Andreotti G, Antwi SO, Arslan AA, Bamlet WR, Beane-Freeman LE, Berndt SI, Bracci PM, Brennan P, Buring JE, Chanock SJ, Gallinger S, Gaziano JM, Giles GG, Giovannucci EL, Goggins MG, Goodman PJ, Haiman CA, Hassan MM, Holly EA, Hung RJ, Katzke V, Kooperberg C, Kraft P, LeMarchand L, Li D, McCullough ML, Milne RL, Moore SC, Neale RE, Oberg AL, Patel AV, Peters U, Rabe KG, Risch HA, Shu XO, Smith-Byrne K, Visvanathan K, Wactawski-Wende J, White E, Wolpin BM, Yu H, Zeleniuch-Jacquotte A, Zheng W, Zhong J, Amundadottir LT, Stolzenberg-Solomon RZ, Klein AP. Genome-Wide Analysis to Assess if Heavy Alcohol Consumption Modifies the Association between SNPs and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:1229-1239. [PMID: 38869494 PMCID: PMC11928872 DOI: 10.1158/1055-9965.epi-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related death globally. Risk factors for pancreatic cancer include common genetic variants and potentially heavy alcohol consumption. We assessed if genetic variants modify the association between heavy alcohol consumption and pancreatic cancer risk. METHODS We conducted a genome-wide interaction analysis of single-nucleotide polymorphisms (SNP) by heavy alcohol consumption (more than three drinks per day) for pancreatic cancer in European ancestry populations from genome-wide association studies. Our analysis included 3,707 cases and 4,167 controls from case-control studies and 1,098 cases and 1,162 controls from cohort studies. Fixed-effect meta-analyses were conducted. RESULTS A potential novel region of association on 10p11.22, lead SNP rs7898449 (interaction P value (Pinteraction) = 5.1 × 10-8 in the meta-analysis; Pinteraction = 2.1 × 10-9 in the case-control studies; Pinteraction = 0.91 in the cohort studies), was identified. An SNP correlated with this lead SNP is an expression quantitative trait locus for the neuropilin 1 gene. Of the 17 genomic regions with genome-wide significant evidence of association with pancreatic cancer in prior studies, we observed suggestive evidence that heavy alcohol consumption modified the association for one SNP near LINC00673, rs11655237 on 17q25.1 (Pinteraction = 0.004). CONCLUSIONS We identified a novel genomic region that may be associated with pancreatic cancer risk in conjunction with heavy alcohol consumption located near an expression quantitative trait locus for neuropilin 1, a protein that plays an important role in the development and progression of pancreatic cancer. IMPACT This work can provide insights into the etiology of pancreatic cancer, particularly in heavy drinkers.
Collapse
Affiliation(s)
- Zhanmo Ni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David F McKean
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samuel O Antwi
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - William R Bamlet
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Laura E Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - J M Gaziano
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Aging, Brigham and Women's Hospital, Boston, Massachusetts
- Boston VA Healthcare System, Boston, Massachusetts
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Edward L Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter Kraft
- Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ann L Oberg
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari G Rabe
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Zheng-Lin B, Rainone M, Varghese AM, Yu KH, Park W, Berger M, Mehine M, Chou J, Capanu M, Mandelker D, Stadler ZK, Birsoy O, Jairam S, Yang C, Li Y, Wong D, Benhamida JK, Ladanyi M, Zhang L, O’Reilly EM. Methylation Analyses Reveal Promoter Hypermethylation as a Rare Cause of "Second Hit" in Germline BRCA1-Associated Pancreatic Ductal Adenocarcinoma. Mol Diagn Ther 2022; 26:645-653. [PMID: 36178671 PMCID: PMC9626413 DOI: 10.1007/s40291-022-00614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterized by the occurrence of pathogenic variants in BRCA1/2 in 5-6% of patients. Biallelic loss of BRCA1/2 enriches for response to platinum agents and poly (ADP-ribose) polymerase 1 inhibitors. There is a dearth of evidence on the mechanism of inactivation of the wild-type BRCA1 allele in PDAC tumors with a germline BRCA1 (gBRCA1) pathogenic or likely pathogenic variant (P/LPV). Herein, we examine promotor hypermethylation as a "second hit" mechanism in patients with gBRCA1-PDAC. METHODS We evaluated patients with PDAC who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) somatic and germline testing from an institutional database. DNA isolated from tumor tissue and matched normal peripheral blood were sequenced by MSK-IMPACT. In patients with gBRCA1-PDAC, we examined the somatic BRCA1 mutation status and promotor methylation status of the tumor BRCA1 allele via a methylation array analysis. In patients with sufficient remaining DNA, a second methylation analysis by pyrosequencing was performed. RESULTS Of 1012 patients with PDAC, 19 (1.9%) were identified to harbor a gBRCA1 P/LPV. Fifteen patients underwent a methylation array and the mean percentage of BRCA1 promotor methylation was 3.62%. In seven patients in whom sufficient DNA was available, subsequent pyrosequencing confirmed an unmethylated BRCA1 promotor. Loss of heterozygosity was detected in 12 of 19 (63%, 95% confidence interval 38-84) patients, demonstrating loss of heterozygosity is the major molecular mechanism of BRCA1 inactivation in PDAC. Two (10.5%) cases had a somatic BRCA1 mutation. CONCLUSIONS In patients with gBRCA1-P/LPV-PDAC, loss of heterozygosity is the main inactivating mechanism of the wild-type BRCA1 allele in the tumor, and methylation of the BRCA1 promoter is a distinctly uncommon occurrence.
Collapse
Affiliation(s)
- Binbin Zheng-Lin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael Rainone
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA USA
| | - Anna M. Varghese
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA
| | - Kenneth H. Yu
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA
| | - Wungki Park
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Miika Mehine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, NY USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, NY USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Zsofia K. Stadler
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ozge Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Sowmya Jairam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Donna Wong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Eileen M. O’Reilly
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|