1
|
García-Bustos JJ, Luna Pizarro G, Patolsky RG, Joray MB, Villalba-Vizcaino V, Galeano P, Espitia-Almeida F, Correa Múnera M, Ozturk M, Rópolo AS, Feliziani C, Touz MC, Laiolo J. Antiparasitic activity of Colombian Amazon palm extracts against Giardia lamblia trophozoites: insights into cellular death mechanisms. Front Microbiol 2025; 16:1523880. [PMID: 40177476 PMCID: PMC11961968 DOI: 10.3389/fmicb.2025.1523880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Colombian plants have a long history of use in traditional medicine and ethnopharmacology, particularly for treating stomach pain, digestive issues, diarrhea, and other gastrointestinal disorders. Recent studies have renewed interest in their potential therapeutic properties. Methods This study evaluated the giardicidal activity of 15 crude plant extracts native to the Colombian Amazon against Giardia lamblia (genotype A, strain WB/1267). The MTT colorimetric assay was used to determine the effectiveness of these extracts at a concentration of 500 μg/mL. Extracts showing significant activity were further analyzed to determine their half-maximal inhibitory concentration (IC50). The cell death mechanisms of Attalea butyracea were studied using flow cytometry, confocal microscopy, and transmission electron microscopy (TEM). Results Among the tested extracts, the Attalea butyracea fruit extract (P-2) exhibited the highest activity against WB/1267 (IC50 = 62.10 ± 6.57 μg/mL) and demonstrated giardicidal activity against GS/M (IC50 = 100.90 ± 3.40 μg/mL, genotype B) human infecting strains. These results prompted a detailed investigation into its mechanism of action using the WB/1267 strain as a model. At its IC50 concentration, P-2 primarily exerted its antiproliferative effect by induction of early apoptosis. A notable increase in late apoptosis and necrosis was observed at 2xIC50. Immunofluorescence assay (IFA) and confocal microscopy revealed chromatin condensation in treated trophozoites, while flow cytometry indicated G1/S cell cycle arrest. Furthermore, exposure to P-2 led to oxidative stress, evidenced by a significant increase in reactive oxygen species (ROS). The extract's ability to disrupt various structural components of the parasite was confirmed through IFA and transmission electron microscopy. Interestingly, the P-2 extract effectively synergized with the first-line drug metronidazole against Giardia WB/1267 trophozoites. Discussion These findings underscore the therapeutic potential of Colombian plant extracts in treating giardiasis, particularly highlighting the novel giardicidal activity of Attalea butyracea fruit extract and its promise for further therapeutic development.
Collapse
Affiliation(s)
- Juan Javier García-Bustos
- Programa de Medicina Veterinaria y Zootecnia, Universidad de La Amazonia, Caquetá, Florencia, Colombia
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Gabriel Luna Pizarro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío G. Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas (CIDIE-CONICET-UCC), Universidad Católica de Córdoba, Córdoba, Argentina
| | - Vivian Villalba-Vizcaino
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Paula Galeano
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Fabián Espitia-Almeida
- Centro de Investigaciones en Ciencias de la Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Facultad de Ciencias Básicas, Programa de Biología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Marco Correa Múnera
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Mehmet Ozturk
- Department of Chemistry, Faculty of Science, Mugla Sitki Koçman University, Mugla, Türkiye
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells. Cancers (Basel) 2022; 14:cancers14040900. [PMID: 35205647 PMCID: PMC8869984 DOI: 10.3390/cancers14040900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Our previous studies demonstrated that a silver(I) nitrate complex with metronidazole presented greater photo-stability, antimicrobial, cytotoxic and genotoxic properties than silver(I) nitrate. These advantages make the complex a better candidate for clinical therapy than pure salt. Therefore, in this study, we decided to synthetize and determine the chemical, cytotoxic and antimicrobial properties of [Ag(MTZ)2]2SO4, a novel metronidazole silver(I) complex, in comparison with pure salt Ag2SO4 and [Ag(MTZ)2NO3]. The photo-stability, cytotoxicity toward cancer cells and antimicrobial activity of [Ag(MTZ)2]2SO4 is higher than Ag2SO4. What is more, we found that the novel synthetized complex shows better cytotoxicity against cancer cells than [Ag(MTZ)2NO3]. Both complexes have similar biological activity against the majority of tested bacterial strains. Abstract Silver salts and azole derivatives are well known for their antimicrobial properties. Recent evidence has demonstrated also their cytotoxic and genotoxic potential toward both normal and cancer cells. Still, little is known about the action of complexes of azoles with silver(I) salts. Thus, the goal of the study was to compare the chemical, cytotoxic and antimicrobial properties of metronidazole complexes with silver(I) nitrate and silver(I) sulfate to metronidazole and pure silver(I) salts. We synthetized a novel complex, [Ag(MTZ)2]2SO4, and confirmed its chemical structure and properties using 1H and 13C NMR spectroscopy and X-Ray, IR and elemental analysis. To establish the stability of complexes [Ag(MTZ)2NO3] and [Ag(MTZ)2]2SO4, they were exposed to daylight and UV-A rays and were visually assessed. Their cytotoxicity toward human cancer cells (HepG2, Caco-2) and mice normal fibroblasts (Balb/c 3T3 clone A31) was determined by MTT, NRU, TPC and LDH assays. The micro-dilution broth method was used to evaluate their antimicrobial properties against Gram-positive and Gram-negative bacteria. A biofilm eradication study was also performed using the crystal violet method and confocal laser scanning microscopy. The photo-stability of the complexes was higher than silver(I) salts. In human cancer cells, [Ag(MTZ)2]2SO4 was more cytotoxic than Ag2SO4 and, in turn, AgNO3 was more cytotoxic than [Ag(MTZ)2NO3]. For Balb/c 3T3 cells, Ag2SO4 was more cytotoxic than [Ag(MTZ)2]2SO4, while the cytotoxicity of AgNO3 and [Ag(MTZ)2NO3] was similar. Metronidazole in the tested concentration range was non-cytotoxic for both normal and cancer cells. The complexes showed increased bioactivity against aerobic and facultative anaerobic bacteria when compared to metronidazole. For the majority of the tested bacterial strains, the silver(I) salts and complexes showed a higher antibacterial activity than MTZ; however, some bacterial strains presented the reverse effect. Our results showed that silver(I) complexes present higher photo-stability, cytotoxicity and antimicrobial activity in comparison to MTZ and, to a certain extent, to silver(I) salts.
Collapse
|
3
|
Zia J, Farhat SM, Aazam ES, Riaz U. Highly efficient degradation of metronidazole drug using CaFe 2O 4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4125-4135. [PMID: 32926273 DOI: 10.1007/s11356-020-10694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Catalytic degradation based on microwave irradiation is an emerging technique which promises prompt and efficient catalytic degradation of organic pollutants. Calcium ferrite (CaFe2O4), poly(1-napththylamine) (PNA), and PNA/CaFe2O4 nanohybrids were synthesized via microwave-assisted technique. The properties of the as-prepared CaFe2O4, PNA, and PNA/CaFe2O4 nanohybrids were characterized by the thermogravimetric analysis (TGA), FTIR, XRD, SEM, and ultraviolet-visible spectrophotometry (UV-vis) analyses. The formation of inorganic-organic hybrids was confirmed by the FTIR and XRD studies. Loading of PNA was confirmed to be 8%, 16%, 32%, and 40% in CaFe2O4 which was established by TGA studies and the thermal stability was found to follow the order: CaFe2O4 > 8-PNA/CaFe2O4 > 16-PNA/CaFe2O4 > 32-PNA/CaFe2O4 > 40-PNA/CaFe2O4 > PNA. CaFe2O4 and PNA revealed band gap values of 3.42 eV and 2.60 eV respectively while for the PNA/CaFe2O4 nanohybrids, the values were found to be ranging between 2.46 and 3.00 eV. The PNA modified CaFe2O4 nanohybrids showed higher degradation efficiency towards metronidazole (MTZ) drug as compared with PNA and pure CaFe2O4. MTZ drug showed around 94% degradation within 21 min of microwave irradiation using 40-PNA/CaFe2O4 as catalyst. The enhanced catalytic activity was attributed to the high surface area of the nanohybrid catalyst as well as improved microwave catalytic activity of PNA. The reactive species responsible for degradation were confirmed by scavenger studies which formation of ·OH and O2·- radicals. Recyclability tests showed that the 40-PNA/CaFe2O4 nanohybrid exhibited 86% degradation of MTZ (90 mg/l) even after the third cycle, which reflected higher reusability of the catalyst. The MTZ fragments were identified using liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Jannatun Zia
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahzada Misbah Farhat
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, 23622, Saudi Arabia
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Radko L, Stypuła-Trębas S, Posyniak A, Żyro D, Ochocki J. Silver(I) Complexes of the Pharmaceutical Agents Metronidazole and 4-Hydroxymethylpyridine: Comparison of Cytotoxic Profile for Potential Clinical Application. Molecules 2019; 24:molecules24101949. [PMID: 31117201 PMCID: PMC6572996 DOI: 10.3390/molecules24101949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
In previous papers, we have reported on the high antifungal and significant antibacterial activity against Gram-positive and Gram-negative bacteria of the water-soluble silver(I) complexes of metronidazole and derivatives of pyridine compared to silver nitrate. In the present study, the cytotoxic activity of the silver(I) complexes of metronidazole and 4-hydroxymethylpyridine was compared with that of silver nitrate. Metronidazole and 4-hydroxymethylpyridine were investigated using Balb/c 3T3 and HepG2 cell lines in order to evaluate the potential clinical application of silver(I) complexes. The cells were exposed for 72 h to compounds at eight concentrations. The cytotoxic concentrations (IC50) of the study compounds were assessed within four biochemical endpoints: mitochondrial activity, lysosomal activity, cellular membrane integrity, and total protein content. The investigated silver(I) complexes displayed comparable cytotoxicity to that of silver nitrate used in clinics. Mean cytotoxic concentrations calculated for investigated silver(I) complexes from concentration-response curves ranged from 2.13 to 26.5 µM. HepG2 cells were less sensitive to the tested complexes compared to fibroblasts (Balb/c 3T3). However, the most affected endpoint for HepG2 cells was cellular membrane damage. The cytotoxicity of both silver complexes was comparable for Balb/c 3T3 cells. The cytotoxic potential of the new silver(I) compounds compared to that of silver nitrate used in medicine indicates that they are safe and could be used in clinical practice. The presented results are yet more stimulating to further studies that evaluate the therapeutic use of silver complexes.
Collapse
Affiliation(s)
- Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Sylwia Stypuła-Trębas
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Dominik Żyro
- Department of Bioinorganic Chemistry, Chair of Medicinal Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Chair of Medicinal Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
5
|
Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, Rajakaruna RS, Cantacessi C. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS One 2017; 12:e0184719. [PMID: 28892494 PMCID: PMC5593201 DOI: 10.1371/journal.pone.0184719] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Investigations of the impact that patent infections by soil-transmitted gastrointestinal nematode parasites exert on the composition of the host gut commensal flora are attracting growing interest by the scientific community. However, information collected to date varies across experiments, and further studies are needed to identify consistent relationships between parasites and commensal microbial species. Here, we explore the qualitative and quantitative differences between the microbial community profiles of cohorts of human volunteers from Sri Lanka with patent infection by one or more parasitic nematode species (H+), as well as that of uninfected subjects (H-) and of volunteers who had been subjected to regular prophylactic anthelmintic treatment (Ht). High-throughput sequencing of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data revealed no significant differences in alpha diversity (Shannon) and richness between groups (P = 0.65, P = 0.13 respectively); however, beta diversity was significantly increased in H+ and Ht when individually compared to H-volunteers (P = 0.04). Among others, bacteria of the families Verrucomicrobiaceae and Enterobacteriaceae showed a trend towards increased abundance in H+, whereas the Leuconostocaceae and Bacteroidaceae showed a relative increase in H- and Ht respectively. Our findings add valuable knowledge to the vast, and yet little explored, research field of parasite—microbiota interactions and will provide a basis for the elucidation of the role such interactions play in pathogenic and immune-modulatory properties of parasitic nematodes in both human and animal hosts.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yasara Rathnayaka
- Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Laura E. Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Nolan
- Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | | | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Escobedo AA, Lalle M, Hrastnik NI, Rodríguez-Morales AJ, Castro-Sánchez E, Cimerman S, Almirall P, Jones J. Combination therapy in the management of giardiasis: What laboratory and clinical studies tell us, so far. Acta Trop 2016; 162:196-205. [PMID: 27349189 DOI: 10.1016/j.actatropica.2016.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 01/15/2023]
Abstract
Treatment failures in patients suffering from giardiasis are not uncommon feature. The most frequent approach in these cases is to treat these patients with longer repeated courses and/or higher doses of the primary therapy, or using drugs from a different class to avoid potential cross-resistance. However, a higher rate of adverse events may limit this strategy. In this context, combination therapy (CT) is emerging as a valuable option against refractory giardiasis. In the attempt to evaluate the benefits of CT, a number of experimental studies, clinical series, and randomized clinical trials (RCTs), as well as several veterinary studies have been performed, with varying results. Here, we present a critical analysis of the available information regarding CT for the treatment of Giardia infection, as well as the authors' opinion with respect to its use. RCTs of combination therapy are limited and the optimal combinations and administration strategies need yet to be clarified. Analyses of the cost-effectiveness and RCTs of CTs for Giardia infection are required to assess the role of these drugs for the control of giardiasis, mainly in the case of treatment failures linked to suspected drug tolerance are the case.
Collapse
|
7
|
de Castro AT, Castro AP, Silva MS, de Souza IMM, Martins-Souza RL, Chagas-Paula DA, Coelho LFL, da Silva Bolzani V, Pivatto M, Viegas C, Marques MJ. In vitro evaluation of the schistosomicidal effect of the extracts, fractions and major 3-hydroxy-2,6-dialkyl-substituted piperidine alkaloids from the flowers of Senna spectabilis (Fabaceae). Bioorg Med Chem Lett 2016; 26:4197-204. [DOI: 10.1016/j.bmcl.2016.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 01/14/2023]
|
8
|
Escobedo AA, Hanevik K, Almirall P, Cimerman S, Alfonso M. Management of chronic Giardia infection. Expert Rev Anti Infect Ther 2014; 12:1143-57. [PMID: 25059638 DOI: 10.1586/14787210.2014.942283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in our understanding of chronic giardiasis (CG) may improve our care of patients in this stage of the disease. This review proposes a new concept of CG and highlights the recent advances in our understanding and management of this condition. According to this review, management requires, initially, an accurate diagnosis, which may exclude several conditions that can mimic CG. Optimal treatment requires a tailored approach which includes the recognition of the known modifiable causes of this health condition, assessment of symptoms and potential complications, their treatment utilizing, if necessary, a multidisciplinary team, and an ongoing monitoring for the effect of therapy - weighing the efficacy of individual drugs - all of these together may lead to a successful treatment of CG.
Collapse
Affiliation(s)
- Angel A Escobedo
- Academic Paediatric Hospital "Pedro Borrás", Calle F No. 616 esquina 27, Plaza, La Habana, CP 10400, Cuba
| | | | | | | | | |
Collapse
|
9
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
10
|
Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 2011; 66:2038-44. [DOI: 10.1093/jac/dkr251] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|