1
|
He JJ, Ma J, Wang JL, Zhang FK, Li JX, Zhai BT, Elsheikha HM, Zhu XQ. iTRAQ-based Quantitative Proteomics Analysis Identifies Host Pathways Modulated during Toxoplasma gondii Infection in Swine. Microorganisms 2020; 8:microorganisms8040518. [PMID: 32260483 PMCID: PMC7232346 DOI: 10.3390/microorganisms8040518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is a leading cause of foodborne illness and consumption of undercooked pig meat is a major risk factor for acquiring toxoplasmosis, which causes a substantial burden on society. Here, we used isobaric tags for relative and absolute quantification (iTRAQ) labelling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify cellular proteins and pathways altered during T. gondii infection in pigs. We also used parallel reaction monitoring-based LC-MS/MS to verify the levels of protein expression of infected spleens and mesenteric lymph nodes (MLNs). At 6 days post-infection (dpi), 156, 391, 170, 292, and 200 differentially expressed proteins (DEPs) were detected in the brain, liver, lung, MLNs and spleen, respectively. At 18 dpi, 339, 351, 483, 388, and 303 DEPs were detected in the brain, liver, lung, MLNs and spleen, respectively. Although proteins involved in immune responses were upregulated in all infected tissues, protein expression signature in infected livers was dominated by downregulation of the metabolic processes. By weighted gene co-expression network analysis, we could further show that all proteins were clustered into 25 co-expression modules and that the pink module significantly correlated with the infection status. We also identified 163 potential anti-T. gondii proteins (PATPs) and provided evidence that two PATPs (HSP70.2 and PDIA3) can reduce T. gondii burden in porcine macrophages in vitro. This comprehensive proteomics analysis reveals new facets in the pathogenesis of T. gondii infection and identifies key proteins that may contribute to the pig’s defense against this infection.
Collapse
Affiliation(s)
- Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Bin-Tao Zhai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (H.M.E.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.-J.H.); (J.M.); (J.-L.W.); (F.-K.Z.); (J.-X.L.); (B.-T.Z.)
- Correspondence: (H.M.E.); (X.-Q.Z.)
| |
Collapse
|
2
|
Abstract
Toxoplasma gondii is a highly prevalent protozoon that can infect all warm-blooded animals, including humans. It is frequently used as an Apicomplexan parasite model in
research. In this review, the invasion mechanism of T. gondii is described as a representative Apicomplexan parasite. The invasion machinery of T. gondii
consists of the moving junction and the glideosome, which is a specific motor system for Apicomplexan parasites. I provide details about the moving junction, parasite-secreted proteins and
host adhesion receptors, the glideosome, and calcium signaling, which generates the power for the gliding mobility of T. gondii. A detailed understanding of parasite
invasion can be useful for the development of new effective drugs to inhibit this event and disrupt the Apicomplexan life cycle.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
3
|
Gong H, Kobayashi K, Sugi T, Takemae H, Horimoto T, Xuan X, Akashi H, Kato K. Pull-down method to access the cell surface receptor for Toxoplasma gondii. Parasitol Int 2016; 65:514-515. [PMID: 27591002 DOI: 10.1016/j.parint.2016.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022]
Abstract
Protein X, which is expressed on the surface of Toxoplasma and is thought to interact with host molecules, was expressed as a GST recombinant protein, conjugated to sepharose 4B, and used to pull down biotin-labeled 293T cells. The product was analysis by 2D-PAGE and Western blotting. Mass spectrometry revealed the reacted spots from the gel to be heat shock proteins.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyousuke Kobayashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido 080-8555, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido 080-8555, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido 080-8555, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido 080-8555, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
4
|
Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences. Vet Parasitol 2015; 211:158-69. [PMID: 26026806 DOI: 10.1016/j.vetpar.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France; State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China.
| | - Jordan Marchand
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Congshan Yang
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| |
Collapse
|