1
|
Allweier J, Bartels M, Torabi H, Tauler MDPM, Metwally NG, Roeder T, Gutsmann T, Bruchhaus I. Cytoadhesion of Plasmodium falciparum-Infected Red Blood Cells Changes the Expression of Cytokine-, Histone- and Antiviral Protein-Encoding Genes in Brain Endothelial Cells. Mol Microbiol 2024; 122:948-967. [PMID: 39630601 DOI: 10.1111/mmi.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Malaria remains a significant global health problem, mainly due to Plasmodium falciparum, which is responsible for most fatal infections. Infected red blood cells (iRBCs) evade spleen clearance by adhering to endothelial cells (ECs), triggering capillary blockage, inflammation, endothelial dysfunction and altered vascular permeability, prompting an endothelial transcriptional response. The iRBCIT4var04/HBEC-5i model, where iRBCs present IT4var04 (VAR2CSA) on their surface, was used to analyze the effects of iRBC binding on ECs at different temperature (37°C vs. 40°C). Binding of non-infected RBCs (niRBCs) and fever alone altered the expression of hundreds of genes in ECs. Comparing the expression profile of HBEC-5i cells cultured either in the presence of iRBCs or in the presence of niRBCs revealed significant upregulation of genes linked to immune response, nucleosome assembly, NF-kappa B signaling, angiogenesis, and antiviral immune response/interferon-alpha/beta signaling. Raising the temperature to 40°C, simulating fever, led to further upregulation of many genes, particularly those involved in cytokine production and angiogenesis. In summary, the presence of iRBCs stimulates ECs, activating several immunological pathways and affecting antiviral (-parasitic) mechanisms and angiogenesis. Our data uncovered the induction of the interferon-alpha/beta signaling pathway in ECs in response to iRBCs.
Collapse
Affiliation(s)
- Johannes Allweier
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Michael Bartels
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanifeh Torabi
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Nahla Galal Metwally
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Roeder
- Department Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- DZL, German Center for Lung Research, ARCN, Airway Research Center North, Kiel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Iris Bruchhaus
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Kotepui M, Mala W, Kwankaew P, Kotepui KU, Masangkay FR, Wilairatana P. Distinct cytokine profiles in malaria coinfections: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011061. [PMID: 36716305 PMCID: PMC9886258 DOI: 10.1371/journal.pntd.0011061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Few data exist on the distinct cytokine profiles of individuals with malaria coinfections and other diseases. This study focuses on data collation of distinct cytokine profiles between individuals with malaria coinfections and monoinfections to provide evidence for further diagnostic or prognostic studies. METHODS We searched five medical databases, including Embase, MEDLINE, PubMed, Ovid, and Scopus, for articles on cytokines in malaria coinfections published from January 1, 1983 to May 3, 2022, after which the distinct cytokine patterns between malaria coinfection and monoinfection were illustrated in heat maps. RESULTS Preliminary searches identified 2127 articles, of which 34 were included in the systematic review. Distinct cytokine profiles in malaria coinfections with bacteremia; HIV; HBV; dengue; filariasis; intestinal parasites; and schistosomiasis were tumor necrosis factor (TNF), interferon (IFN)-γ, IFN-α, interleukin (IL)-1, IL-1 receptor antagonist (Ra), IL-4, IL-7, IL-12, IL-15, IL-17; TNF, IL-1Ra, IL-4, IL-10, IL-12, IL-18, CCL3, CCL5, CXCL8, CXCL9, CXCL11, granulocyte colony-stimulating factor (G-CSF); TNF, IFN-γ, IL-4, IL-6, IL-10, IL-12, CCL2; IFN-γ, IL-1, IL-4, IL-6, IL-10, IL-12, IL-13, IL-17, CCL2, CCL3, CCL4, G-CSF; IL-1Ra, IL-10, CXCL5, CXCL8, CXCL10; TNF, IL-2, IL-4, IL-6, IL-10; and TNF, IFN-γ, IL-4, IL-5, IL-10, transforming growth factor-β, CXCL8, respectively. CONCLUSION This systematic review provides information on distinct cytokine profiles of malaria coinfections and malaria monoinfections. Further studies should investigate whether specific cytokines for each coinfection type could serve as essential diagnostic or prognostic biomarkers for malaria coinfections.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
- * E-mail: (MK); (PW)
| | - Wanida Mala
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Pattamaporn Kwankaew
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Kwuntida Uthaisar Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail: (MK); (PW)
| |
Collapse
|
4
|
Prevalence, probability, and characteristics of malaria and filariasis co-infections: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010857. [PMID: 36269701 PMCID: PMC9586402 DOI: 10.1371/journal.pntd.0010857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria and filariasis are significant vector-borne diseases that are co-endemic in the same human populations. This study aims to collate the evidence, probability, and characteristics of malaria and filariasis co-infections in participants among studies reporting the co-occurrence of both diseases. METHODS We searched for potentially relevant articles reporting the co-occurrence of malaria and filariasis in five electronic databases (Embase, PubMed, Scopus, Medline, and CENTRAL) from inception to May 22, 2022. We estimated the pooled prevalence and probability of malaria and filariasis co-infections among study participants using random-effects meta-analyses and synthesized the characteristics of patients with co-infections narratively. RESULTS We identified 951 articles, 24 of which (96,838 participants) met eligibility criteria and were included in the systematic review. Results of the meta-analysis showed a pooled prevalence of malaria and filariasis co-infections among participants of 11%. The prevalence of co-infections was 2.3% in Africa, 0.2% in Asia, and 1.6% in South America. The pooled prevalences of malaria and Wuchereria bancrofti, malaria and Loa loa, malaria and Mansonella perstans co-infections were 0.7%, 1.2%, and 1.0%, respectively. The meta-analysis results showed that the co-infections between two parasites occurred by probability (P = 0.001). Patients with co-infections were at increased risk of having an enlarged spleen, a lower rate of severe anemia, lower parasite density, and more asymptomatic clinical status. Patients with co-infections had decreased levels of C-X-C motif chemokine 5, tumor necrosis factor-α, interleukin-4, c4 complement, and interleukin-10. In addition, patients with co-infections had a lower interleukin-10/tumor necrosis factor-α ratio and higher interleukin-10/interleukin-6 ratio. CONCLUSION The present study showed that the prevalence of malaria and filariasis co-infections was low and varied between geographical areas in the selected articles. Co-infections tended to occur with a low probability. Further studies investigating the outcomes and characteristics of co-infections are needed.
Collapse
|
5
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
6
|
Lautenbach MJ, Yman V, Silva CS, Kadri N, Broumou I, Chan S, Angenendt S, Sondén K, Plaza DF, Färnert A, Sundling C. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep 2022; 39:110709. [PMID: 35443186 DOI: 10.1016/j.celrep.2022.110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.
Collapse
Affiliation(s)
- Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, South Stockholm Hospital, Stockholm, Sweden
| | - Carolina Sousa Silva
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Nadir Kadri
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Broumou
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sherwin Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Raacke M, Kerr A, Dörpinghaus M, Brehmer J, Wu Y, Lorenzen S, Fink C, Jacobs T, Roeder T, Sellau J, Bachmann A, Metwally NG, Bruchhaus I. Altered Cytokine Response of Human Brain Endothelial Cells after Stimulation with Malaria Patient Plasma. Cells 2021; 10:cells10071656. [PMID: 34359826 PMCID: PMC8303479 DOI: 10.3390/cells10071656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infections with the deadliest malaria parasite, Plasmodium falciparum, are accompanied by a strong immunological response of the human host. To date, more than 30 cytokines have been detected in elevated levels in plasma of malaria patients compared to healthy controls. Endothelial cells (ECs) are a potential source of these cytokines, but so far it is not known if their cytokine secretion depends on the direct contact of the P. falciparum-infected erythrocytes (IEs) with ECs in terms of cytoadhesion. Culturing ECs with plasma from malaria patients (27 returning travellers) resulted in significantly increased secretion of IL-11, CXCL5, CXCL8, CXCL10, vascular endothelial growth factor (VEGF) and angiopoietin-like protein 4 (ANGPTL4) if compared to matching controls (22 healthy individuals). The accompanying transcriptome study of the ECs identified 43 genes that were significantly increased in expression (≥1.7 fold) after co-incubation with malaria patient plasma, including cxcl5 and angptl4. Further bioinformatic analyses revealed that biological processes such as cell migration, cell proliferation and tube development were particularly affected in these ECs. It can thus be postulated that not only the cytoadhesion of IEs, but also molecules in the plasma of malaria patients exerts an influence on ECs, and that not only the immunological response but also other processes, such as angiogenesis, are altered.
Collapse
Affiliation(s)
- Michaela Raacke
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Amy Kerr
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Michael Dörpinghaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Yifan Wu
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
- Department of Biology, University of Hamburg, 20148 Hamburg, Germany
- Correspondence: ; Tel.: +49-404-281-8472
| |
Collapse
|