1
|
Li Y, Wang LL, Feng LL, Duan DY, Mihaljica D, Cheng TY. Characterization and expression analysis of heat shock proteins HfHspc1 and HfHspc4 in Haemaphysalis flava ticks. Parasitol Res 2024; 123:409. [PMID: 39688713 DOI: 10.1007/s00436-024-08422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
In this study, the cDNAs of heat shock cognate 90 protein 1 (HfHspc1) and heat shock cognate 90 protein 4 (HfHspc4) from Haemaphysalis flava (Acari: Ixodidae) were obtained using the rapid amplification of cDNA ends (RACE) approach, and the expression patterns of HfHspc1 and HfHspc4 in different developmental stages, engorgement stages and tick organs were analyzed by qPCR. The full length of HfHspc1 was 2411 bp, and its open reading frame (ORF) was 2196 bp, encoding a protein of 732 aa, containing five HSPC family signatures, with MEEVD motif at its extreme C-terminal. The full length of HfHspc4 was 2800 bp, and its ORF was 2364 bp, encoding a protein of 789 aa, containing a signal peptide and five family signatures, with HEEL motif at its extreme C-terminal. The expression of HfHspc1 and HfHspc4 was the highest in males, while it was significantly the highest in the ovaries of fully engorged females, potentially implying the roles of these proteins in the successful digestion of blood and development of eggs.
Collapse
Affiliation(s)
- Yong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China
| | - Lan-Lan Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China
| | - Li-Li Feng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China
| | - Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China.
| |
Collapse
|
2
|
Sang MK, Patnaik HH, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Park SH, Cha SJ, Ko JH, Shin EH, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. Transcriptome analysis of Haemaphysalis flava female using Illumina HiSeq 4000 sequencing: de novo assembly, functional annotation and discovery of SSR markers. Parasit Vectors 2023; 16:367. [PMID: 37848984 PMCID: PMC10583488 DOI: 10.1186/s13071-023-05923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Ticks are ectoparasites capable of directly damaging their hosts and transmitting vector-borne diseases. The ixodid tick Haemaphysalis flava has a broad distribution that extends from East to South Asia. This tick is a reservoir of severe fever with thrombocytopenia syndrome virus (SFTSV) that causes severe hemorrhagic disease, with cases reported from China, Japan and South Korea. Recently, the distribution of H. flava in South Korea was found to overlap with the occurrence of SFTSV. METHODS This study was undertaken to discover the molecular resources of H. flava female ticks using the Illumina HiSeq 4000 system, the Trinity de novo sequence assembler and annotation against public databases. The locally curated Protostome database (PANM-DB) was used to screen the putative adaptation-related transcripts classified to gene families, such as angiotensin-converting enzyme, aquaporin, adenylate cyclase, AMP-activated protein kinase, glutamate receptors, heat shock proteins, molecular chaperones, insulin receptor, mitogen-activated protein kinase and solute carrier family proteins. Also, the repeats and simple sequence repeats (SSRs) were screened from the unigenes using RepeatMasker (v4.0.6) and MISA (v1.0) software tools, followed by the designing of SSRs flanking primers using BatchPrimer 3 (v1.0) software. RESULTS The transcriptome produced a total of 69,822 unigenes, of which 46,175 annotated to the homologous proteins in the PANM-DB. The unigenes were also mapped to the EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) specializations. Promiscuous presence of protein kinase, zinc finger (C2H2-type), reverse transcriptase, and RNA recognition motif domains was observed in the unigenes. A total of 3480 SSRs were screened, of which 1907 and 1274 were found as tri- and dinucleotide repeats, respectively. A list of primer sequences flanking the SSR motifs was detailed for validation of polymorphism in H. flava and the related tick species. CONCLUSIONS The reference transcriptome information on H. flava female ticks will be useful for an enriched understanding of tick biology, its competency to act as a vector and the study of species diversity related to disease transmission.
Collapse
Affiliation(s)
- Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Seung-Hwan Park
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Sung-Jae Cha
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - E Hyun Shin
- Research Institute, Korea Pest Control Association, Seoul, 08501, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore , Odisha, 756089, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea.
| |
Collapse
|
3
|
Cheng R, Li D, Duan DY, Parry R, Cheng TY, Liu L. Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis 2023; 14:102180. [PMID: 37011496 DOI: 10.1016/j.ttbdis.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tick eggs contain all essential proteins for embryogenesis, and egg proteins are a potential reservoir of tick-protective antigens. However, the protein profile and dynamics during embryonic development remain unknown. This study aimed to depict the protein profile and dynamics in tick embryogenesis, further providing protein candidates for targeted interventions. Eggs from Haemaphysalis flava ticks were incubated at 28 °C and 85% relative humidity. On days 0 (newly laid eggs without incubation), 7, 14 and 21, eggs were collected, dewaxed and subject to protein extraction. Extracted proteins were digested by filter-aided sample preparation and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). MS data were searched against an in-house H. flava protein database for tick-derived protein identification. Abundances of 40 selected high-confidence proteins were further quantified by LC-parallel reaction monitoring (PRM)/MS analysis throughout egg incubation. A total of 93 high-confidence proteins were identified in eggs on 0-day incubation. Identified proteins belonged to seven functional categories: transporters, enzymes, proteinase inhibitors, immunity-related proteins, cytoskeletal proteins, heat shock proteins and uncharacterized proteins. The enzyme category contained the most types of proteins. Neutrophil elastase inhibitors represented the most abundant proteins in terms of intensity-based absolute-protein-quantification. LC-PRM/MS revealed that the abundances of 20 proteins increased including enolase, calreticulin, actin, GAPDH et cetera, and the abundances of 11 proteins decreased including vitellogenins, neutrophil elastase inhibitor, carboxypeptidase Q, et cetera from 0- to 21-day incubation. This study provides the most comprehensive egg protein profile and dynamics during tick embryogenesis. Further investigations are needed to test the tick-control efficacy by targeting the egg proteins.
Collapse
|
4
|
Zhao Y, Liu L, Liu JB, Wu CY, Duan DY, Cheng TY. Cloning, expression, and function of ferritins in the tick Haemaphysalis flava. Ticks Tick Borne Dis 2021; 13:101892. [PMID: 34942560 DOI: 10.1016/j.ttbdis.2021.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The full-length cDNA of two ferritins of Haemaphysalis flava were cloned after which recombinant Hf-FER1 and Hf-FER2 were expressed and their function was analyzed. In addition, RNA interference (RNAi) based on the injection of Hf-fer1 or Hf-fer2 dsRNA into fully engorged female ticks was performed. The cDNA encoding Hf-FER1 is 834 bp in length. It contains an iron-responsive element in the 5' untranslated region and encodes 174 amino acid residues. The full-length cDNA of Hf-FER2 contains 696 bp and encodes 199 amino acids, including a putative signal peptide sequence. Hf-FER1 and Hf-FER2 both have the ferroxidase iron center and the ferrihydrite nucleation center. The evolutionary relationship of Hf-FER1 and Hf-FER2 was established, and the predicted quaternary structures were assembled as typical spherical shells composed of 24 subunits which was demonstrated by nature PAGE. Real-time PCR showed that Hf-fer1 and Hf-fer2 were expressed in all developmental stages, with the highest expression in fully engorged females. The expression of Hf-fer1 and Hf-fer2 were relatively high in unfed larvae. Hf-fer1 was expressed in all tissues and was especially abundant in the salivary glands of fully engorged females. In contrast, the highest levels of Hf-fer2 were found in the midgut of fully engorged females, and no expression was found in the salivary glands of this life stage. Both recombinant Hf-FER1 and Hf-FER2 had iron-binding capabilities. Silencing of both Hf-fer1 and Hf-fer2 affected fecundity. Compared to the control, the percentage of ticks that laid eggs in the Hf-fer1 and Hf-fer2 RNAi groups was 73.3% and 66.7%, respectively. The silenced ticks that laid eggs had lower egg weight to body weight ratios, and the eggs had abnormal morphologies. The hatchability of eggs with normal morphology in the Hf-fer1 and Hf-fer2 silenced groups was 47.8% and 22.8%, respectively, which was significantly different from the control group (P < 0.005). These findings indicate that Hf-FER1 and Hf-FER2 play important roles in the iron storage of H. flava.
Collapse
Affiliation(s)
- Yu Zhao
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Lei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jin-Bao Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Cong-Ying Wu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|