1
|
Karimi MA, Ghajari A, Khademi R, Etemadi MH, Firouz NS, Mohammadvand B, Janeshin K, Darvishi A, Asgarzadeh S, Sadat-Madani SF, Abbasalizadeh M, Shendi ZJ, Kohnehshahri AA, Deravi N, Mazhari SA, Aziz M, Bidares M, Belbasi M, Naziri M, Motlagh HA. Efficacy of preladenant in improving motor symptoms in Parkinson's disease: A systematic review and meta-analysis. IBRO Neurosci Rep 2024; 17:207-219. [PMID: 39262633 PMCID: PMC11387384 DOI: 10.1016/j.ibneur.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024] Open
Abstract
Background Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by dopamine depletion and severe motor impairments. Preladenant, an adenosine A2 receptor antagonist, is an investigational treatment for PD. This systematic review and meta-analysis aimed to critically evaluate the efficacy of Preladenant in improving motor symptoms in patients with PD. Methods A comprehensive literature search was conducted in PubMed, Embase, and Cochrane Central Register of Controlled Trials from inception to March 2023, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Randomized controlled trials (RCTs) comparing Preladenant with placebo in PD patients were included. The primary outcome was the change in daily ON time without troublesome dyskinesia. Secondary outcomes included the change in daily OFF time and adverse events. The risk of bias was assessed using the Cochrane Risk of Bias tool. Results Four RCTs with a total of 2097 PD patients were included. Pooled analysis showed that Preladenant could generally increase daily ON time (pooled effect 0.15 and 95 % CI: -0.19-0.48) and reduce daily OFF time (pooled effect -0.04 and 95 % CI: -0.43-0.36) compared to placebo, however it was not significant. The included studies had moderate to high heterogeneity. No significant differences in adverse events were observed between Preladenant and placebo. Conclusion This meta-analysis suggests that Preladenant may improve motor fluctuations in PD patients by increasing ON time and reducing OFF time. However, the high heterogeneity among studies warrants further large-scale, high-quality RCTs to confirm these findings and establish the long-term safety and efficacy of Preladenant in PD management.
Collapse
Affiliation(s)
- Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghajari
- School of pharmacy Mashhad University of medical science, Mashhad, Iran
| | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Etemadi
- Students Research Committee, School of Medicine, Shahrekord University of Medical Science, Shahrekord, Iran
| | | | - Behnaz Mohammadvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Janeshin
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shafagh Asgarzadeh
- Department of Neurology, Urumia Medical Science University, Urumia, Iran
| | | | | | | | - Ata Akhtari Kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Aziz
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Matin Bidares
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohaddeseh Belbasi
- Students research committee, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdyieh Naziri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
van Wamelen DJ, Leta V, Chaudhuri KR, Jenner P. Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson's Disease. Curr Neuropharmacol 2024; 22:1606-1620. [PMID: 37526188 PMCID: PMC11284721 DOI: 10.2174/1570159x21666230731110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 08/02/2023] Open
Abstract
The symptomatic treatment of Parkinson's disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a 'crystal ball' approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and 'dirty drugs' that have the potential to become new key players in the field of Parkinson's disease treatment.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valentina Leta
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Jenner
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
5
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Jing XZ, Yuan XZ, Luo X, Zhang SY, Wang XP. An Update on Nondopaminergic Treatments for Motor and Non-motor Symptoms of Parkinson's Disease. Curr Neuropharmacol 2023; 21:1806-1826. [PMID: 35193486 PMCID: PMC10514518 DOI: 10.2174/1570159x20666220222150811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Nondopaminergic neurotransmitters such as adenosine, norepinephrine, serotonin, glutamate, and acetylcholine are all involved in Parkinson's disease (PD) and promote its symptoms. Therefore, nondopaminergic receptors are key targets for developing novel preparations for the management of motor and non-motor symptoms in PD, without the potential adverse events of dopamine replacement therapy. We reviewed English-written articles and ongoing clinical trials of nondopaminergic treatments for PD patients till 2014 to summarize the recent findings on nondopaminergic preparations for the treatment of PD patients. The most promising research area of nondopaminergic targets is to reduce motor complications caused by traditional dopamine replacement therapy, including motor fluctuations and levodopa-induced dyskinesia. Istradefylline, Safinamide, and Zonisamide were licensed for the management of motor fluctuations in PD patients, while novel serotonergic and glutamatergic agents to improve motor fluctuations are still under research. Sustained- release agents of Amantadine were approved for treating levodopa induced dyskinesia (LID), and serotonin 5HT1B receptor agonist also showed clinical benefits to LID. Nondopaminergic targets were also being explored for the treatment of non-motor symptoms of PD. Pimavanserin was approved globally for the management of hallucinations and delusions related to PD psychosis. Istradefylline revealed beneficial effect on daytime sleepiness, apathy, depression, and lower urinary tract symptoms in PD subjects. Droxidopa may benefit orthostatic hypotension in PD patients. Safinamide and Zonisamide also showed clinical efficacy on certain non-motor symptoms of PD patients. Nondopaminergic drugs are not expected to replace dopaminergic strategies, but further development of these drugs may lead to new approaches with positive clinical implications.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiao-Ping Wang
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Rose R, Mitchell E, Van Der Graaf P, Takaichi D, Hosogi J, Geerts H. A quantitative systems pharmacology model for simulating OFF-Time in augmentation trials for Parkinson’s disease: application to preladenant. J Pharmacokinet Pharmacodyn 2022; 49:593-606. [DOI: 10.1007/s10928-022-09825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
|
8
|
Di Luca DG, Reyes NGD, Fox SH. Newly Approved and Investigational Drugs for Motor Symptom Control in Parkinson's Disease. Drugs 2022; 82:1027-1053. [PMID: 35841520 PMCID: PMC9287529 DOI: 10.1007/s40265-022-01747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Motor symptoms are a core feature of Parkinson's disease (PD) and cause a significant burden on patients' quality of life. Oral levodopa is still the most effective treatment, however, the motor benefits are countered by inherent pharmacologic limitations of the drug. Additionally, with disease progression, chronic levodopa leads to the appearance of motor complications including motor fluctuations and dyskinesia. Furthermore, several motor abnormalities of posture, balance, and gait may become less responsive to levodopa. With these unmet needs and our evolving understanding of the neuroanatomic and pathophysiologic underpinnings of PD, several advances have been made in defining new therapies for motor symptoms. These include newer levodopa formulations and drug delivery systems, refinements in adjunctive medications, and non-dopaminergic treatment strategies. Although some are in early stages of development, these novel treatments potentially widen the available options for the management of motor symptoms allowing clinicians to provide an individually tailored care for PD patients. Here, we review the existing and emerging interventions for PD with focus on newly approved and investigational drugs for motor symptoms, motor fluctuations, dyskinesia, and balance and gait dysfunction.
Collapse
Affiliation(s)
- Daniel Garbin Di Luca
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - Nikolai Gil D. Reyes
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| |
Collapse
|
9
|
Jost WH, Tönges L. [Adenosine A2A Receptor Antagonists as a Treatment Option for Parkinson's Disease?]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:565-570. [PMID: 35226930 DOI: 10.1055/a-1771-6225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In Parkinson's disease, the focus has long been on motor symptoms and therapy with dopaminergic substances. In recent years, the importance of non-motor symptoms has been increasingly recognized, as they occur early in the course of the disease and restrict considerably the quality of life. However, this also made the need for treatment of non-dopaminergic deficits obvious. Adenosine A2A receptor antagonists were identified as an additional therapy, since the adenosine A2A receptors are non-dopaminergic and selectively localized in the basal ganglia. This means that the striato-thalamo-cortical loops can be modulated. An adenosine A2A receptor antagonist was already approved in Japan in 2013 and in the USA in 2019 as an add-on to L-DOPA. Approval for this drug in Europe is expected in the near future. In this overview, we present the theoretical basis and current data on its efficacy and therapeutic use.
Collapse
Affiliation(s)
| | - Lars Tönges
- Klinik für Neurologie, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
10
|
Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson's disease. Brain Res Bull 2020; 168:100-109. [PMID: 33387636 DOI: 10.1016/j.brainresbull.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022]
Abstract
Current treatments for Parkinson's disease (PD) are mainly dopaminergic drugs. However, dopaminergic drugs are only symptomatic treatments and limited by several side effects. Recent studies into drug development focused on emerging new molecular mechanisms, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear receptor-related 1 (Nurr1), adenosine receptor A2, nicotine receptor, metabotropic glutamate receptors (mGluRs), and glucocerebrosidase (GCase). Also, immunotherapy and common pathological mechanisms shared with Alzheimer's Disease (AD) and diabetes have attracted much attention. In this review, we summarized the development of preclinical and clinical studies of novel drugs and the improvement of dopaminergic drugs to provide a prospect for PD treatment.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
LeWitt PA, Aradi SD, Hauser RA, Rascol O. The challenge of developing adenosine A 2A antagonists for Parkinson disease: Istradefylline, preladenant, and tozadenant. Parkinsonism Relat Disord 2020; 80 Suppl 1:S54-S63. [PMID: 33349581 DOI: 10.1016/j.parkreldis.2020.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Laboratory and clinical experience have pointed to the value of targeting motor pathways emerging from the striatum to treat problems arising in advanced Parkinson's disease (PD). These pathways are selectively populated with a subtype of adenosine binding sites (A2A receptors) that offer a target for improving PD symptomatology. Several compounds were developed that possess high selectivity and potency for blocking this receptor. Three of these compounds - istradefylline, preladenant, and tozadenant - were chosen for clinical development programs that culminated in Phase 3 multicenter randomized clinical trials. Each of these drugs exert virtually no off-target neurochemical effects. Clinical trials with these drugs focused upon reducing OFF time when administered adjunctly to levodopa and other antiparkinsonian medications. Despite promising Phase 2 data, preladenant did not show efficacy when tested in a randomized placebo-controlled Phase 3 clinical trial. Reports of hematological toxicity necessitated ceasing an ongoing Phase 3 investigation of tozadenant. Following a challenging approval process, based on the results of randomized clinical trials carried out in the U.S. and Japan, istradefylline received approval in these countries for treatment of OFF episodes.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, USA; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Pharmacology and Neurosciences, Toulouse Parkinson Expert Center, NS-Park/FCRIN Network and NeuroToul COEN Center, University Hospital of Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| |
Collapse
|
12
|
Gonzalez-Latapi P, Bhowmick SS, Saranza G, Fox SH. Non-Dopaminergic Treatments for Motor Control in Parkinson's Disease: An Update. CNS Drugs 2020; 34:1025-1044. [PMID: 32785890 DOI: 10.1007/s40263-020-00754-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamatergic, noradrenergic, serotonergic, and cholinergic systems play a critical role in the basal ganglia circuitry. Targeting these non-dopaminergic receptors remains a focus of ongoing research to improve Parkinson's disease (PD) motor symptoms, without the potential side effects of dopamine replacement therapy. This review updates advancements in non-dopaminergic treatments for motor control in PD since 2013. To date, no non-dopaminergic selective drug has shown significant long-term efficacy as monotherapy in PD. The largest area of development in non-dopaminergic targets has been for motor complications of dopamine replacement therapy (motor fluctuations and dyskinesia). For treatment of motor fluctuations, safinamide, zonisamide, and istradefylline are currently approved, and novel glutamatergic and serotonergic drugs are in development. Long-acting formulations of amantadine are approved for treating dyskinesia. Several non-dopaminergic drugs have failed to show anti-dyskinetic efficacy, while some are still in development. Non-dopaminergic targets are also being pursued to treat specific motor symptoms of PD. For example, CX-8998 (a calcium channel modulator) is being evaluated for PD tremor and rivastigmine may improve gait dysfunction in PD. Drug repurposing continues to be a key strategy for non-dopaminergic targets in PD, but the field needs to increase discovery and availability of such drugs.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, Department of Medicine, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Suvorit Subhas Bhowmick
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, Department of Medicine, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Gerard Saranza
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, Department of Medicine, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Susan H Fox
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Division of Neurology, Department of Medicine, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada. .,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Borah P, Deka S, Mailavaram RP, Deb PK. P1 Receptor Agonists/Antagonists in Clinical Trials - Potential Drug Candidates of the Future. Curr Pharm Des 2020; 25:2792-2807. [PMID: 31333097 DOI: 10.2174/1381612825666190716111245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson's disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. OBJECTIVE The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. METHODS In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. RESULTS Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. CONCLUSION This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur (Affiliated to Andhra University), Bhimavaram, W.G. Dist., AP, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman, PO Box-1, 19392, Jordan
| |
Collapse
|
14
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
15
|
Du JJ, Chen SD. Current Nondopaminergic Therapeutic Options for Motor Symptoms of Parkinson's Disease. Chin Med J (Engl) 2018; 130:1856-1866. [PMID: 28748860 PMCID: PMC5547839 DOI: 10.4103/0366-6999.211555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The aim of this study was to summarize recent studies on nondopaminergic options for the treatment of motor symptoms in Parkinson's disease (PD). Data Sources: Papers in English published in PubMed, Cochrane, and Ovid Nursing databases between January 1988 and November 2016 were searched using the following keywords: PD, nondopaminergic therapy, adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator. We also reviewed the ongoing clinical trials in the website of clinicaltrials.gov. Study Selection: Articles related to the nondopaminergic treatment of motor symptoms in PD were selected for this review. Results: PD is conventionally treated with dopamine replacement strategies, which are effective in the early stages of PD. Long-term use of levodopa could result in motor complications. Recent studies revealed that nondopaminergic systems such as adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator pathways could include potential therapeutic targets for motor symptoms, including motor fluctuations, levodopa-induced dyskinesia, and gait disorders. Some nondopaminergic drugs, such as istradefylline and amantadine, are currently used clinically, while most such drugs are in preclinical testing stages. Transitioning of these agents into clinically beneficial strategies requires reliable evaluation since several agents have failed to show consistent results despite positive findings at the preclinical level. Conclusions: Targeting nondopaminergic transmission could improve some motor symptoms in PD, especially the discomfort of dyskinesia. Although nondopaminergic treatments show great potential in PD treatment as an adjunct therapy to levodopa, further investigation is required to ensure their success.
Collapse
Affiliation(s)
- Juan-Juan Du
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules 2017; 22:molecules22040676. [PMID: 28441750 PMCID: PMC6154612 DOI: 10.3390/molecules22040676] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
The inhibitory adenosine A1 receptor (A1R) and excitatory A2A receptor (A2AR) are predominantly expressed in the brain. Whereas the A2AR has been implicated in normal aging and enhancing neurotoxicity in multiple neurodegenerative diseases, the inhibitory A1R has traditionally been ascribed to have a neuroprotective function in various brain insults. This review provides a summary of the emerging role of prolonged A1R signaling and its potential cross-talk with A2AR in the cellular basis for increased neurotoxicity in neurodegenerative disorders. This A1R signaling enhances A2AR-mediated neurodegeneration, and provides a platform for future development of neuroprotective agents in stroke, Parkinson’s disease and epilepsy.
Collapse
|