1
|
Martino Cinnera A, Casula EP, Pezzopane V, D'Acunto A, Maiella M, Bonnì S, Ferraresi M, Guacci M, Tramontano M, Iosa M, Paolucci S, Morone G, Vannozzi G, Koch G. Association of TMS-EEG interhemispheric imbalance with upper limb motor impairment in chronic stroke patients: An exploratory study. Clin Neurophysiol 2025; 171:95-106. [PMID: 39889485 DOI: 10.1016/j.clinph.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/20/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVE We aimed to investigate the involvement of interhemispheric cortical dynamics as measured by combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) in recovery of upper limb (UL) motor functions in chronic stroke patients. METHODS Ten patients with a history of single ischemic chronic stroke were enrolled (4F, 63.8 ± 9.9 years). Each patient underwent TMS-EEG recordings to evaluate interhemispheric cortical dynamics as well as a reaching task recorded with inertial measurement units, and a series of clinical assessments. TMS-EEG neurophysiological data were analysed considering spatiotemporal, power response, and interhemispheric balance (IHB) dynamics. RESULTS We found that IHB index (IHBi) and low-frequency power (LFP) (4-13 Hz) in the affected hemisphere were associated with the degree of UL impairment. CONCLUSION Increased IHBi due to stroke is an unfavourable factor of UL' functions. Similarly, LFP of both hemispheres is strongly correlated with clinical and kinematic outcomes. SIGNIFICANCE TMS-EEG biomarkers of interhemispheric unbalance could be used to estimate functional recovery and drive tailored neuromodulation and neurorehabilitation approaches.
Collapse
Affiliation(s)
- Alex Martino Cinnera
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elias Paolo Casula
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Pezzopane
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia D'Acunto
- Department of Neurosciences, Paediatric Neurology, University of Rome Tor Vergata, Rome, Italy
| | - Michele Maiella
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sonia Bonnì
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Matteo Ferraresi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marcella Guacci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Marco Tramontano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Bologna, Italy; Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Stefano Paolucci
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Vannozzi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
2
|
Fogel H, Zifman N, Hallett M. Utilization of Single-Pulse Transcranial-Evoked Potentials in Neurological and Psychiatric Clinical Practice: A Narrative Review. Neurol Int 2024; 16:1421-1437. [PMID: 39585065 PMCID: PMC11587110 DOI: 10.3390/neurolint16060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background: The utility of single-pulse TMS (transcranial magnetic stimulation)-evoked EEG (electroencephalograph) potentials (TEPs) has been extensively studied in the past three decades. TEPs have been shown to provide insights into features of cortical excitability and connectivity, reflecting mechanisms of excitatory/inhibitory balance, in various neurological and psychiatric conditions. In the present study, we sought to review and summarize the most studied neurological and psychiatric clinical indications utilizing single-pulse TEP and describe its promise as an informative novel tool for the evaluation of brain physiology. Methods: A thorough search of PubMed, Embase, and Google Scholar for original research utilizing single-pulse TMS-EEG and the measurement of TEP was conducted. Our review focused on the indications and outcomes most clinically relevant, commonly studied, and well-supported scientifically. Results: We included a total of 55 publications and summarized them by clinical application. We categorized these publications into seven sub-sections: healthy aging, Alzheimer's disease (AD), disorders of consciousness (DOCs), stroke rehabilitation and recovery, major depressive disorder (MDD), Parkinson's disease (PD), as well as prediction and monitoring of treatment response. Conclusions: TEP is a useful measurement of mechanisms underlying neuronal networks. It may be utilized in several clinical applications. Its most prominent uses include monitoring of consciousness levels in DOCs, monitoring and prediction of treatment response in MDD, and diagnosis of AD. Additional applications including the monitoring of stroke rehabilitation and recovery, as well as a diagnostic aid for PD, have also shown encouraging results but require further evidence from randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Hilla Fogel
- QuantalX Neuroscience Ltd., Kfar-Saba 4453001, Israel;
| | - Noa Zifman
- QuantalX Neuroscience Ltd., Kfar-Saba 4453001, Israel;
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
Zifman N, Levy-Lamdan O, Hiller T, Thaler A, Dolev I, Mirelman A, Fogel H, Hallett M, Maidan I. TMS-evoked potentials unveil occipital network involvement in patients diagnosed with Parkinson's disease within 5 years of inclusion. NPJ Parkinsons Dis 2024; 10:182. [PMID: 39349492 PMCID: PMC11443052 DOI: 10.1038/s41531-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
Distinguishing Parkinson's disease (PD) subgroups may be achieved by observing network responses to external stimuli. We compared TMS-evoked potential (TEP) measures from stimulation of bilateral motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and visual cortex (V1) between 62 PD patients (age: 69.9 ± 7.5) and 76 healthy controls (age: 69.2 ± 4.3) using a TMS-EEG protocol. TEP measures were analyzed using two-way ANCOVA adjusted for MOCA. PD patients were divided into tremor dominant (TD), non-tremor dominant (NTD) and rapid disease progression (RDP) subgroups. PD patients showed lower wide-waveform adherence (wWFA) (p = 0.025) and interhemispheric connectivity (IHCCONN) (p < 0.001) compared to healthy controls. Lower occipital IHCCONN correlated with advanced disease stage (r = -0.37, p = 0.0039). The RDP and NTD groups showed lower wWFA in response to occipital stimulation than the TD group (p = 0.005). Occipital TEP measures identified RDP patients with 85% accuracy. These findings demonstrate occipital network involvement in early PD stages, suggesting that TEP measures offer insights into altered networks in PD subgroups.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | | | - Tal Hiller
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Avner Thaler
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hilla Fogel
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Mark Hallett
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
D’Onofrio V, Manzo N, Guerra A, Landi A, Baro V, Määttä S, Weis L, Porcaro C, Corbetta M, Antonini A, Ferreri F. Combining Transcranial Magnetic Stimulation and Deep Brain Stimulation: Current Knowledge, Relevance and Future Perspectives. Brain Sci 2023; 13:brainsci13020349. [PMID: 36831892 PMCID: PMC9954740 DOI: 10.3390/brainsci13020349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Deep brain stimulation (DBS) has emerged as an invasive neuromodulation technique for the treatment of several neurological disorders, but the mechanisms underlying its effects remain partially elusive. In this context, the application of Transcranial Magnetic Stimulation (TMS) in patients treated with DBS represents an intriguing approach to investigate the neurophysiology of cortico-basal networks. Experimental studies combining TMS and DBS that have been performed so far have mainly aimed to evaluate the effects of DBS on the cerebral cortex and thus to provide insights into DBS's mechanisms of action. The modulation of cortical excitability and plasticity by DBS is emerging as a potential contributor to its therapeutic effects. Moreover, pairing DBS and TMS stimuli could represent a method to induce cortical synaptic plasticity, the therapeutic potential of which is still unexplored. Furthermore, the advent of new DBS technologies and novel treatment targets will present new research opportunities and prospects to investigate brain networks. However, the application of the combined TMS-DBS approach is currently limited by safety concerns. In this review, we sought to present an overview of studies performed by combining TMS and DBS in neurological disorders, as well as available evidence and recommendations on the safety of their combination. Additionally, we outline perspectives for future research by highlighting knowledge gaps and possible novel applications of this approach.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Via Alberoni 70, 0126 Venice, Italy
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
| | - Luca Weis
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
| | - Camillo Porcaro
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences, and Technologies (ISTC)-National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Angelo Antonini
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Department of Neurology, Washington University, St. Louis, MO 63108, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63108, USA
- Correspondence: (A.A.); (F.F.)
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Correspondence: (A.A.); (F.F.)
| |
Collapse
|
8
|
Pei G, Liu X, Huang Q, Shi Z, Wang L, Suo D, Funahashi S, Wu J, Zhang J, Fang B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front Aging Neurosci 2022; 14:1045073. [PMID: 36408100 PMCID: PMC9669794 DOI: 10.3389/fnagi.2022.1045073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson’s disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinting Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Jian Zhang,
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Boyan Fang,
| |
Collapse
|
9
|
Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:5491. [PMID: 35897995 PMCID: PMC9371095 DOI: 10.3390/s22155491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist's subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018-2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community's growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.
Collapse
Affiliation(s)
| | - Sizhe An
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Ganapati Bhat
- School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA 99164, USA;
| | - Holly Shill
- Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ 85013, USA;
| | - Umit Y. Ogras
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
10
|
Rostami M, Zomorrodi R, Rostami R, Hosseinzadeh GA. Impact of methodological variability on EEG responses evoked by transcranial magnetic stimulation: a meta-analysis. Clin Neurophysiol 2022; 142:154-180. [DOI: 10.1016/j.clinph.2022.07.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
11
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Conti M, Bovenzi R, Garasto E, Schirinzi T, Placidi F, Mercuri NB, Cerroni R, Pierantozzi M, Stefani A. Brain Functional Connectivity in de novo Parkinson's Disease Patients Based on Clinical EEG. Front Neurol 2022; 13:844745. [PMID: 35370899 PMCID: PMC8964594 DOI: 10.3389/fneur.2022.844745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease (PD), cortical-subcortical interplay plays a relevant role in affecting clinical performance. Functional MRI sequences described changes in functional connectivity at different stages of disease. Scarce are, instead, the investigations examining brain connectivity in patients with PD at early stages of disease. For this aim, here we analyzed the differences in functional connectivity between de novo, never treated, PD patients and healthy controls. The analyses were based upon custom-written scripts on the Matlab platform, combined with high-level functions of Fieldtrip, Brainstorm, and Brain Connectivity toolboxes. First, we proceeded to the spectral analysis of the EEG data in the five frequency bands (δ-θ-α-β-γ). Second, we calculated functional connectivity matrices based on both coherency (COH) and imaginary part of coherency (iCOH), in the δ-θ-α-β-γ frequency bands. Then, four network measures (density, transitivity, global efficiency, and assortativity) were computed in identified connectivity matrices. Finally, we compared the spectral density, functional connectivity matrices, and network measured between healthy controls and de novo PD patients through two-samples T-test. A total of 21 de novo PD patients and 20 healthy subjects were studied. No differences were observed in spectral analysis between the two groups, with the exception of the γ band where a significant increase in power density was found in PD patients. A reduced connectivity in the main EEG frequency bands (α-β frequency bands) was observed in PD patients compared to controls, while a hyperconnectivity was found in PD patients in γ band. Among the network measures, a reduced assortativity coefficient was found in de novo PD patients in α frequency band. Our results show the occurrence of early EEG functional connectivity alterations from the initial stages of PD. From this point of view, connectivity analysis may ease a better understanding of the complexity of PD physiopathology.
Collapse
Affiliation(s)
- Matteo Conti
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Roberta Bovenzi
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Elena Garasto
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Tommaso Schirinzi
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Neurology Unit, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Neurology Unit, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| | | | - Alessandro Stefani
- Parkinson Centre, Department of Systems Medicine, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Wang Y, Niu Z, Xia X, Bai Y, Liang Z, He J, Li X. Application of fast perturbational complexity index to the diagnosis and prognosis for disorders of consciousness. IEEE Trans Neural Syst Rehabil Eng 2022; 30:509-518. [PMID: 35213312 DOI: 10.1109/tnsre.2022.3154772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Diagnosis and prognosis of patients with disorders of consciousness (DOC) is a challenge for neuroscience and clinical practice. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is an effective tool to measure the level of consciousness. However, a scientific and accurate method to quantify TMS-evoked activity is still lacking. This study applied fast perturbational complexity index (PCIst) to the diagnosis and prognosis of DOC patients. METHODS TMS-EEG data of 30 normal healthy participants (NOR) and 181 DOC patients were collected. The PCIst was used to assess the time-space complexity of TMS-evoked potentials (TEP). We selected parameters of PCIst in terms of data length, data delay, sampling rate and frequency band. In addition, we collected Coma Recovery Scale-Revised (CRS-R) values for 114 DOC patients after one year. Finally, we trained the classification and regression model. RESULTS 1) PCIst shows the differences among NOR, minimally consciousness state (MCS) and unresponsive wakefulness syndrome (UWS) and has low computational cost. 2) Optimal parameters of data length and delay after TMS are 300ms and 101-300ms. Significant differences of PCIst at 5-8Hz and 9-12Hz bands are found among NOR, MCS and UWS groups. PCIst still works when TEP is down-sampled to 250 Hz. 3) PCIst at 9-12Hz shows the highest performance in diagnosis and prognosis of DOC. CONCLUSIONS This study confirms that PCIst can quantify the level of consciousness. PCIst is a potential measure for the diagnosis and prognosis of DOC patients.
Collapse
|
14
|
Leodori G, De Bartolo MI, Guerra A, Fabbrini A, Rocchi L, Latorre A, Paparella G, Belvisi D, Conte A, Bhatia KP, Rothwell JC, Berardelli A. Motor Cortical Network Excitability in Parkinson's Disease. Mov Disord 2022; 37:734-744. [PMID: 35001420 DOI: 10.1002/mds.28914] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Motor impairment in Parkinson's disease (PD) reflects changes in the basal ganglia-thalamocortical circuit converging on the primary motor cortex (M1) and supplementary motor area (SMA). Previous studies assessed M1 excitability in PD using transcranial magnetic stimulation (TMS)-evoked electromyographic activity. TMS-evoked electroencephalographic activity may unveil broader motor cortical network changes in PD. OBJECTIVE The aim was to assess motor cortical network excitability in PD. METHODS We compared TMS-evoked cortical potentials (TEPs) from M1 and the pre-SMA between 20 PD patients tested off and on medication and 19 healthy controls (HCs) and investigated possible correlations with bradykinesia. RESULTS Off PD patients compared to HCs had smaller P30 responses from the M1s contralateral (M1+) and ipsilateral (M1-) to the most bradykinetic side and increased pre-SMA N40. Dopaminergic therapy normalized the amplitude of M1+ and M1- P30 as well as pre-SMA N40. We found a positive correlation between M1+ P30 amplitude and bradykinesia in off PD patients. CONCLUSIONS Changes in M1 P30 and pre-SMA N40 in PD suggest that M1 excitability is reduced on both sides, whereas pre-SMA excitability is increased. The effect of dopaminergic therapy and the clinical correlation suggest that these cortical changes may reflect abnormal basal ganglia-thalamocortical activity. TMS electroencephalography provides novel insight into motor cortical network changes related to the pathophysiology of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Maidan I, Zifman N, Hausdorff JM, Giladi N, Levy-Lamdan O, Mirelman A. A multimodal approach using TMS and EEG reveals neurophysiological changes in Parkinson's disease. Parkinsonism Relat Disord 2021; 89:28-33. [PMID: 34216938 DOI: 10.1016/j.parkreldis.2021.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Alterations in large scale neural networks leading to neurophysiological changes have been described in Parkinson's disease (PD). The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been suggested as a promising tool to identify and quantify neurophysiological mechanisms. The aim of this study was to investigate specific changes in electrical brain activity in response to stimulation of four brain areas in patients with PD. METHODS 21 healthy controls and 32 patients with PD underwent a combined TMS-EEG assessment that included stimulation of four brain areas: left M1, right M1, left dorso-lateral prefrontal cortex (DLPFC), and right DLPFC. Six measures were calculated to characterize the TMS evoked potentials (TEP) using EEG: (1) wave form adherence (WFA), (2) late phase deflection (LPD), (3) early phase deflection (EPD), (4) short-term plasticity (STP), (5) inter-trial adherence, and (6) connectivity between right and left M1 and DLPFC. A Linear mixed-model was used to compare these measures between groups and areas stimulated. RESULTS Patients with PD showed lower WFA (p = 0.052), lower EPD (p = 0.009), lower inter-trial adherence (p < 0.001), and lower connectivity between homologs areas (p = 0.050), compared to healthy controls. LPD and STP measures were not different between the groups. In addition, lower inter-trial adherence correlated with longer disease duration (r = -0.355, p = 0.050). CONCLUSIONS Our findings provide evidence to various alterations in neurophysiological measures in patients with PD. The higher cortical excitability along with increased variability and lower widespread of the evoked potentials in PD can elucidate different aspects related to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Noa Zifman
- QuantalX Neuroscience, 'Beer-Yaacov', Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
16
|
Ji G, Liu T, Li Y, Liu P, Sun J, Chen X, Tian Y, Chen X, Dahmani L, Liu H, Wang K, Hu P. Structural correlates underlying accelerated magnetic stimulation in Parkinson's disease. Hum Brain Mapp 2021; 42:1670-1681. [PMID: 33314545 PMCID: PMC7978118 DOI: 10.1002/hbm.25319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days. Patients treated with real cTBS, but not with sham cTBS, showed a significant improvement in Part III of the Unified PD Rating Scale (p < .0001). This improvement was observed as early as 1 week after the start of cTBS treatment, and maintained 8 weeks after the end of the treatment. These findings indicated that the treatment response was swift with a long-lasting effect. Imaging analyses showed that volume of the left globus pallidus (GP) increased after cTBS treatment. Furthermore, the volume change of GP was mildly correlated with symptom improvement and associated with the baseline fractional anisotropy of SMA-GP tracts. Together, these findings implicated that the accelerated cTBS could effectively alleviate motor symptoms of PD, maybe by modulating the motor circuitry involving the SMA-GP pathway.
Collapse
Affiliation(s)
- Gong‐Jun Ji
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Tingting Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Ying Li
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Pingping Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Jinmei Sun
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xingui Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Yanghua Tian
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xianwen Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Louisa Dahmani
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hesheng Liu
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kai Wang
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Panpan Hu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| |
Collapse
|
17
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
19
|
Transcranial magnetic stimulation-evoked connectivity reveals modulation effects of repetitive transcranial magnetic stimulation on patients with disorders of consciousness. Neuroreport 2020; 30:1307-1315. [PMID: 31714484 DOI: 10.1097/wnr.0000000000001362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several studies have investigated possible role of repetitive transcranial magnetic stimulation (rTMS) in patients with disorder of consciousness (DOC). But the details of patients' brain responses to the rTMS are yet to be disclosed. The aim of the study is to explore the neural electrical responses of DOC patients to rTMS modulation. DOC Patients [14 vegetative state, seven minimally conscious state (MCS)] and healthy subjects were enrolled and received one session of rTMS. The TMS-electroencephalogram was recorded at before and immediately after rTMS stimulation. TMS-evoked potentials as well as TMS-evoked connectivity were proposed to capture the effective connectivity alteration induced by rTMS. Significant changes of TMS-evoked potential were found in the healthy group but not in DOC patients. TMS-evoked connectivity was significantly enhanced by the rTMS in healthy and MCS groups. In addition, the enhancement was positively correlated with patients' Coma Recovery Scale-Revised scores. Global synchrony of the TMS-evoked connectivity matrix significantly enhanced by rTMS in the control and MCS groups but not in vegetative state patients. Furthermore, after rTMS stimulation, the similarity of TMS-evoked connectivity patterns between pairwise patients was significantly raised in MCS patients. But no significant changes were found in vegetative state patients. TMS-evoked connectivity reveals that rTMS can effectively modulate effective connectivity of MCS patients, but no evidence of changes in vegetative state patients.
Collapse
|
20
|
Busan P. Developmental stuttering and the role of the supplementary motor cortex. JOURNAL OF FLUENCY DISORDERS 2020; 64:105763. [PMID: 32361030 DOI: 10.1016/j.jfludis.2020.105763] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Developmental stuttering is a frequent neurodevelopmental disorder with a complex neurobiological basis. Robust neural markers of stuttering include imbalanced activity of speech and motor related brain regions, and their impaired structural connectivity. The dynamic interaction of cortical regions is regulated by the cortico-basal ganglia-thalamo-cortical system with the supplementary motor area constituting a crucial cortical site. The SMA integrates information from different neural circuits, and manages information about motor programs such as self-initiated movements, motor sequences, and motor learning. Abnormal functioning of SMA is increasingly reported in stuttering, and has been recently indicated as an additional "neural marker" of DS: anatomical and functional data have documented abnormal structure and activity of the SMA, especially in motor and speech networks. Its connectivity is often impaired, especially when considering networks of the left hemisphere. Compatibly, recent data suggest that, in DS, SMA is part of a poorly synchronized neural network, thus resulting in a likely substrate for the appearance of DS symptoms. However, as evident when considering neural models of stuttering, the role of SMA has not been fully clarified. Herein, the available evidence is reviewed, which highlights the role of the SMA in DS as a neural "hub", receiving and conveying altered information, thus "gating" the release of correct or abnormal motor plans.
Collapse
|
21
|
Guerra A, López-Alonso V, Cheeran B, Suppa A. Solutions for managing variability in non-invasive brain stimulation studies. Neurosci Lett 2020; 719:133332. [DOI: 10.1016/j.neulet.2017.12.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|
22
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
23
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Ni Z, Udupa K, Hallett M, Chen R. Effects of deep brain stimulation on the primary motor cortex: Insights from transcranial magnetic stimulation studies. Clin Neurophysiol 2018; 130:558-567. [PMID: 30527386 DOI: 10.1016/j.clinph.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023]
Abstract
Deep brain stimulation (DBS) implanted in different basal ganglia nuclei regulates the dysfunctional neuronal circuits and improves symptoms in movement disorders. However, the understanding of the neurophysiological mechanism of DBS is at an early stage. Transcranial magnetic stimulation (TMS) can be used safely in movement disorder patients with DBS, and can shed light on how DBS works. DBS at a therapeutic setting normalizes the abnormal motor cortical excitability measured with motor evoked potentials (MEP) produced by primary motor cortical TMS. Abnormal intracortical circuits in the motor cortex tested with paired-pulse TMS paradigm also show normalization with DBS. These changes are accompanied with improvements in symptoms after chronic DBS. Single-pulse DBS produces cortical evoked potentials recorded by electroencephalography at specific latencies and modulates motor cortical excitability at certain time intervals measured with MEP. Combination of basal ganglia DBS with motor cortical TMS at stimulus intervals consistent with the latency of cortical evoked potentials delivered in a repetitive mode produces plastic changes in the primary motor cortex. TMS can be used to examine the effects of open and closed loop DBS. Patterned DBS and TMS delivered in a repetitive mode may be developed as a new therapeutic method for movement disorder patients.
Collapse
Affiliation(s)
- Zhen Ni
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Casula E, Rocchi L, Hannah R, Rothwell J. Effects of pulse width, waveform and current direction in the cortex: A combined cTMS-EEG study. Brain Stimul 2018; 11:1063-1070. [DOI: 10.1016/j.brs.2018.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022] Open
|
26
|
Lio G, Thobois S, Ballanger B, Lau B, Boulinguez P. Removing deep brain stimulation artifacts from the electroencephalogram: Issues, recommendations and an open-source toolbox. Clin Neurophysiol 2018; 129:2170-2185. [PMID: 30144660 DOI: 10.1016/j.clinph.2018.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 12/30/2022]
Abstract
A major question for deep brain stimulation (DBS) research is understanding how DBS of one target area modulates activity in different parts of the brain. EEG gives privileged access to brain dynamics, but its use with implanted patients is limited since DBS adds significant high-amplitude electrical artifacts that can completely obscure neural activity measured using EEG. Here, we systematically review and discuss the methods available for removing DBS artifacts. These include simple techniques such as oversampling, antialiasing analog filtering and digital low-pass filtering, which are necessary but typically not sufficient to fully remove DBS artifacts when each is used in isolation. We also cover more advanced methods, including techniques tracking outliers in the frequency-domain, which can be effective, but are rarely used. The reason for that is twofold: First, it requires advanced skills in signal processing since no user friendly tool for removing DBS artifacts is currently available. Second, it involves fine-tuning to avoid over-aggressive filtering. We highlight an open-source toolbox incorporating most artifact removal methods, allowing users to combine different strategies.
Collapse
Affiliation(s)
- Guillaume Lio
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, Centre de Neuroscience Cognitive, Bron, France
| | - Stéphane Thobois
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, Centre de Neuroscience Cognitive, Bron, France; Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Bénédicte Ballanger
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Philippe Boulinguez
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France.
| |
Collapse
|
27
|
Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, Pierantozzi M, Galati S. Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease: central role of disease severity. Eur J Neurosci 2018; 49:805-816. [DOI: 10.1111/ejn.14088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Rocco Cerroni
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | | | - Claudio Liguori
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry Faculty of Medicine and Surgery University of Malta La Valletta Malta
| | - Mariangela Pierantozzi
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Salvatore Galati
- Movement disorders service Neurocenter of Southern Switzerland Lugano Switzerland
| |
Collapse
|
28
|
Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, Sallustio F, Paolucci S, Caltagirone C, Koch G. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 2018; 175:365-378. [DOI: 10.1016/j.neuroimage.2018.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
|
29
|
Rocchi L, Ibáñez J, Benussi A, Hannah R, Rawji V, Casula E, Rothwell J. Variability and Predictors of Response to Continuous Theta Burst Stimulation: A TMS-EEG Study. Front Neurosci 2018; 12:400. [PMID: 29946234 PMCID: PMC6006718 DOI: 10.3389/fnins.2018.00400] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/24/2018] [Indexed: 12/23/2022] Open
Abstract
Continuous theta-burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation paradigm reported to decrease the excitability of the stimulated cortical area and which is thought to reflect a form of inhibitory synaptic plasticity. However, since its introduction, the effect of cTBS has shown a remarkable variability in its effects, which are often quantified by measuring the amplitude of motor evoked potentials (MEPs). Part of this inconsistency in experimental results might be due to an intrinsic variability of TMS effects caused by genetic or neurophysiologic factors. However, it is also possible that MEP only reflect the excitability of a sub-population of output neurons; resting EEG power and measures combining TMS and electroencephalography (TMS-EEG) might represent a more thorough reflection of cortical excitability. The aim of the present study was to verify the robustness of several predictors of cTBS response, such as I wave recruitment and baseline MEP amplitude, and to test cTBS after-effects on multiple neurophysiologic measurements such as MEP, resting EEG power, local mean field power (LMFP), TMS-related spectral perturbation (TRSP), and inter-trial phase clustering (ITPC). As a result, we were not able to confirm either the expected decrease of MEP amplitude after cTBS or the ability of I wave recruitment and MEP amplitude to predict the response to cTBS. Resting EEG power, LMFP, TRSP, and ITPC showed a more consistent trend toward a decrease after cTBS. Overall, our data suggest that the effect of cTBS on corticospinal excitability is variable and difficult to predict with common electrophysiologic markers, while its effect might be clearer when probed with combined TMS and EEG.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Jaime Ibáñez
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Vishal Rawji
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Elias Casula
- Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. Neuroimage 2018; 169:302-311. [DOI: 10.1016/j.neuroimage.2017.12.048] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
|
31
|
Casula EP, Mayer IMS, Desikan M, Tabrizi SJ, Rothwell JC, Orth M. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. Mov Disord 2018; 33:440-448. [PMID: 29356133 DOI: 10.1002/mds.27285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/17/2017] [Accepted: 12/10/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. OBJECTIVES The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. METHODS We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. RESULTS Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). CONCLUSIONS Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elias P Casula
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Isabella M S Mayer
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, University College London Institute of Neurology, London, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
32
|
Casula EP, Bertoldo A, Tarantino V, Maiella M, Koch G, Rothwell JC, Toffolo GM, Bisiacchi PS. TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction. Clin Neurophysiol 2017; 128:1563-1574. [DOI: 10.1016/j.clinph.2017.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 11/29/2022]
|
33
|
Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, Koch G. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 2016; 6:36191. [PMID: 27796359 PMCID: PMC5086958 DOI: 10.1038/srep36191] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria Concetta Pellicciari
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Domenica Veniero
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Tor Vergata Policlinic, Rome, Italy
| |
Collapse
|