1
|
Brankovic M, Ivanovic V, Basta I, Khang R, Lee E, Stevic Z, Ralic B, Tubic R, Seo G, Markovic V, Bozovic I, Svetel M, Marjanovic A, Veselinovic N, Mesaros S, Jankovic M, Savic-Pavicevic D, Jovin Z, Novakovic I, Lee H, Peric S. Whole exome sequencing in Serbian patients with hereditary spastic paraplegia. Neurogenetics 2024; 25:165-177. [PMID: 38499745 DOI: 10.1007/s10048-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.
Collapse
Affiliation(s)
- Marija Brankovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia.
| | - Vukan Ivanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Ivana Basta
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | | | - Zorica Stevic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Radoje Tubic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Vladana Markovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivo Bozovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Marina Svetel
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Nikola Veselinovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sarlota Mesaros
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dusanka Savic-Pavicevic
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zita Jovin
- Neurology Clinic, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Hane Lee
- 3Billion, Inc., Seoul, South Korea
| | - Stojan Peric
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
2
|
Angelini C, Durand CM, Fergelot P, Deforges J, Vital A, Menegon P, Sarrazin E, Bellance R, Mathis S, Gonzalez V, Renaud M, Frismand S, Schmitt E, Rouanet M, Burglen L, Chabrol B, Desnous B, Arveiler B, Stevanin G, Coupry I, Goizet C. Autosomal Dominant MPAN: Mosaicism Expands the Clinical Spectrum to Atypical Late-Onset Phenotypes. Mov Disord 2023; 38:2103-2115. [PMID: 37605305 DOI: 10.1002/mds.29576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD). OBJECTIVES Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants. METHODS We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls. RESULTS We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells. CONCLUSION Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chloé Angelini
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- Centre de Référence Maladies Rares «Neurogénétique», Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | - Christelle Marie Durand
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- Centre de Référence Maladies Rares «Neurogénétique», Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
- MRGM, University of Bordeaux, INSERM U1211, Bordeaux, France
| | - Patricia Fergelot
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- MRGM, University of Bordeaux, INSERM U1211, Bordeaux, France
| | - Julie Deforges
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Anne Vital
- Service d'Anatomie Pathologique, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Patrice Menegon
- Service de Neuroradiologie, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Elizabeth Sarrazin
- Centre de Référence Maladies Rares Neuromusculaires (AOC), Hôpital Pierre Zobda Quitman, CHU Martinique, Fort de France, Martinique
| | - Rémi Bellance
- Centre de Référence Maladies Rares Neuromusculaires (AOC), Hôpital Pierre Zobda Quitman, CHU Martinique, Fort de France, Martinique
| | - Stéphane Mathis
- Service de Neurologie (Unité Nerf-Muscle), Centre de Référence Maladies Rares, Neuromusculaires (AOC), Centre SLA, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Victoria Gonzalez
- Service de neurologie, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier, France
| | - Mathilde Renaud
- Service de Neurologie, CHRU Nancy, Nancy, France
- Service de Génétique Clinique, CHRU Nancy, Nancy, France
- NGERE, INSERM U1256, Faculté de Médecine, Université de Lorraine, Nancy, France
| | | | - Emmanuelle Schmitt
- Service de Neuroradiologie Diagnostique et Thérapeutique, CHRU Nancy, Nancy, France
| | - Marie Rouanet
- Service d'explorations Fonctionnelles du Système Nerveux, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Lydie Burglen
- Laboratoire de Neurogénétique Pédiatrique, Département de Génétique, Hôpital Trousseau, APHP.Sorbonne Université, Paris, France
| | - Brigitte Chabrol
- Service de Neuropédiatrie, Hôpital Timone enfants, APHM, Marseille, France
| | - Béatrice Desnous
- Service de Neuropédiatrie, Hôpital Timone enfants, APHM, Marseille, France
| | - Benoît Arveiler
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- MRGM, University of Bordeaux, INSERM U1211, Bordeaux, France
| | - Giovanni Stevanin
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
- EPHE, CNRS, INCIA, UMR 5287, PSL Research University, Paris, France
| | - Isabelle Coupry
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
- MRGM, University of Bordeaux, INSERM U1211, Bordeaux, France
| | - Cyril Goizet
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- Centre de Référence Maladies Rares «Neurogénétique», Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
- MRGM, University of Bordeaux, INSERM U1211, Bordeaux, France
| |
Collapse
|
3
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
4
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
5
|
Yang Y, Zhang S, Yang W, Wei T, Hao W, Cheng T, Wang J, Dong W, Qian N. Case Report: Identification of a De novo C19orf12 Variant in a Patient With Mitochondrial Membrane Protein-Associated Neurodegeneration. Front Genet 2022; 13:852374. [PMID: 35432442 PMCID: PMC9006254 DOI: 10.3389/fgene.2022.852374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Mitochondrial membrane protein–associated neurodegeneration (MPAN) mostly arises as an autosomal recessive disease and is caused by variants in the chromosome 19 open reading frame 12 (C19orf12) gene. However, a few C19orf12 monoallelic truncating de novo variants have been reported and segregated as autosomal dominant traits in some cases. Methods: We performed whole-exome sequencing and analyzed genes related to neurodegeneration associated with brain iron accumulation for pathogenic variants. The identified variants were confirmed by Sanger sequencing and tested using in silico tools. Results: The patient had an onset of depression at the age of 22 years, which rapidly progressed to severe dystonia, dementia, and bladder and bowel incontinence. Neuroimaging showed hypointensity in the substantia nigra and the globus pallidum, with additional frontotemporal atrophy. Genetic analysis revealed a single complex de novo variant [c.336_338delinsCACA (p.Trp112CysfsTer40)] in the C19orf12 gene. Conclusion: This study enriches the genetic spectrum and clinical features of C19orf12 variants and provides additional evidence of the variable inheritance pattern of MPAN.
Collapse
Affiliation(s)
- Yue Yang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Shijie Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Xin'an Medical Education Ministry Key Laboratory, Hefei, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wenjie Hao
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Clinical School of Anhui Medical University, Hefei, China
| | - Jiuxiang Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei Dong
- Graduate School of Anhui University of Chinese Medicine, Hefei, China.,The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Nannan Qian
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Fraser S, Koenig M, Farach L, Mancias P, Mowrey K. A De Novo case of autosomal dominant mitochondrial membrane protein-associated neurodegeneration. Mol Genet Genomic Med 2021; 9:e1706. [PMID: 34041867 PMCID: PMC8372066 DOI: 10.1002/mgg3.1706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial membrane protein‐associated neurodegeneration (MPAN) is a genetic neurodegenerative condition previously thought to be inherited only in an autosomal recessive pattern through biallelic pathogenic variants in C19orf12. Recent evidence has proposed that MPAN can also follow autosomal dominant forms of inheritance. We present a case of a de novo pathogenic variant in C19orf12 identified in a female with clinical features consistent with a diagnosis of MPAN, adding further evidence that the disease can be inherited in an autosomal dominant fashion. Methods A 17‐year‐old Hispanic female was born to non‐consanguineous healthy parents. She developed progressive muscle weakness and dystonia beginning when she was 12 years old. Trio, whole‐exome sequencing with mitochondrial genome sequencing, and deletion/duplication analysis of both nuclear and mitochondrial genomes was performed in December 2019. Results Whole‐exome sequencing analysis revealed a single de novo variant in C19orf12. The specific variant is c.256C>T (p.Q86X) located in exon 3. Conclusion Our clinical report provides further clinical evidence that MPAN can be inherited in an autosomal dominant or recessive fashion. The patient's age of onset and clinical symptoms are very similar to the previous patient published with this specific variant as well as others with heterozygous pathogenic variants in C19orf12 in Gregory et al. 2019. Our case report highlights the importance of considering both autosomal dominant and autosomal recessive version of MPAN with all patients demonstrating clinical features suggestive of MPAN.
Collapse
Affiliation(s)
- Stuart Fraser
- Department of Pediatrics, Division of Child and Adolescent Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary Koenig
- Department of Pediatrics, Division of Child and Adolescent Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Laura Farach
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pedro Mancias
- Department of Pediatrics, Division of Child and Adolescent Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kate Mowrey
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|