1
|
Huang S, Li K, Wang C, Liu J, Li S, Tu Y, Wang B, Feng H, Yu Q, Lin H, Xu Y, Wu J, Zhang T, Chen T. A study on the exploration of mild cognitive impairment in Parkinson's disease based on decision-making cognitive computing. Front Neurosci 2025; 18:1495975. [PMID: 39840014 PMCID: PMC11747548 DOI: 10.3389/fnins.2024.1495975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Mild cognitive impairment in Parkinson's disease (PD-MCI) as an independent risk factor for dementia in Parkinson's disease has prognostic value in predicting dementia in PD patients. It was found that the calculation of cognitive function decision-making could better evaluate the cognitive function of PD-MCI. Therefore, this study explored deficits in decision-making cognitive function in PD-MCI population, and mined novel digital biomarkers for recognizing early cognitive decline in PD-MCI through an independently designed maze decision-making digital assessment paradigm. This study included 30 healthy controls 37 PD with normal cognition (PD-NC) and 40 PD-MCI patients. Through difference comparison and stepwise regression analysis, two digital decision-making biomarkers, total decision time and performance average acceleration, were screened, and their joint area under curve for the ability to discriminate between PD-MCI and PD-NC was 0.909, and for the ability to discriminate between PD-MCI and NC was 0.942. In addition, it was found that maze digital decision-making biomarkers had greater early warning efficacy in men than in women. Unlike traditional methods, this study used digital dynamic assessment to reveal possible decision-making cognitive deficits in the PD-MCI populations, which provides new ideas for effective screening for PD-MCI.
Collapse
Affiliation(s)
- Shouqiang Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai Li
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
- Zhejiang Engineering Research Center for Brain Cognition and Brain Diseases Digital Medical Instruments, Hangzhou Medical College, Hangzhou, China
| | - Chen Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiakang Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwu Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuting Tu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huangqin Feng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Yu
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
| | - Hongzhou Lin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuzhe Xu
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
| | - Jinghang Wu
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Legault-Denis C, Aumont É, Onuska KM, Schmitz TW, Bussy A, Chakravarty M, Soucy JP, Bédard MA. Parkinson's disease CA2-CA3 hippocampal atrophy is accompanied by increased cholinergic innervation in patients with normal cognition but not in patients with mild cognitive impairment. Brain Imaging Behav 2024; 18:783-793. [PMID: 38478257 DOI: 10.1007/s11682-024-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 08/31/2024]
Abstract
Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [18F]-Fluoroethoxybenzovesamicol ([18F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV). Participants underwent a detailed neuropsychological assessment, structural MRI, and PET imaging with [18F]-FEOBV. Basal forebrain Ch1-Ch2 volumes were measured using stereotaxic mapping. Hippocampal subfields were automatically defined using the MAGeT-Brain segmentation algorithm. Cholinergic innervation density was quantified using [18F]-FEOBV uptake. Compared with HV, both PD-CN and PD-MCI displayed significantly reduced volumes in CA2-CA3 bilaterally. We found no other hippocampal subfield nor Ch1-Ch2 volume differences between the three groups. PET imaging revealed higher [18F]-FEOBV uptake in CA2-CA3 of the PD-CN compared with HV or PD-MCI. A positive correlation was observed between cognitive performances and [18F]-FEOBV uptake in the right CA2-CA3 subfield. Reduced volume, together with increased [18F]-FEOBV uptake, were observed specifically in the CA2-CA3 hippocampal subfields. However, while the volume change was observed in both PD-CN and PD-MCI, increased [18F]-FEOBV uptake was present only in the PD-CN group. This suggests that a cholinergic compensatory process takes place in the atrophied CA2-CA3 hippocampal subfields and might underlie normal cognition in PD.
Collapse
Affiliation(s)
- Camille Legault-Denis
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Étienne Aumont
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Kate M Onuska
- Schulich Medicine and Dentistry, Western University, London, ON, Canada
| | - Taylor W Schmitz
- Schulich Medicine and Dentistry, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Aurélie Bussy
- Computational Brain Anatomy Laboratory (CoBrA Lab), Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- Computational Brain Anatomy Laboratory (CoBrA Lab), Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Marc-André Bédard
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada.
| |
Collapse
|
4
|
Liu Y, Yuan J, Tan C, Wang M, Zhou F, Song C, Tang Y, Li X, Liu Q, Shen Q, Congli H, Liu J, Cai S, Liao H. Exploring brain asymmetry in early-stage Parkinson's disease through functional and structural MRI. CNS Neurosci Ther 2024; 30:e14874. [PMID: 39056398 PMCID: PMC11273215 DOI: 10.1111/cns.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.
Collapse
Affiliation(s)
- Yujing Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Changlian Tan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Min Wang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fan Zhou
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Chendie Song
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqing Tang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xv Li
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qinru Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qin Shen
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Huang Congli
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jun Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| | - Sainan Cai
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| |
Collapse
|
5
|
Albrecht F, Johansson H, Ekman U, Poulakis K, Bezuidenhout L, Pereira JB, Franzén E. Investigating underlying brain structures and influence of mild and subjective cognitive impairment on dual-task performance in people with Parkinson's disease. Sci Rep 2024; 14:9513. [PMID: 38664471 PMCID: PMC11045833 DOI: 10.1038/s41598-024-60050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cognitive impairment can affect dual-task abilities in Parkinson's disease (PD), but it remains unclear whether this is also driven by gray matter alterations across different cognitive classifications. Therefore, we investigated associations between dual-task performance during gait and functional mobility and gray matter alterations and explored whether these associations differed according to the degree of cognitive impairment. Participants with PD were classified according to their cognitive function with 22 as mild cognitive impairment (PD-MCI), 14 as subjective cognitive impairment (PD-SCI), and 20 as normal cognition (PD-NC). Multiple regression models associated dual-task absolute and interference values of gait speed, step-time variability, and reaction time, as well as dual-task absolute and difference values for Timed Up and Go (TUG) with PD cognitive classification. We repeated these regressions including the nucleus basalis of Meynert, dorsolateral prefrontal cortex, and hippocampus. We additionally explored whole-brain regressions with dual-task measures to identify dual-task-related regions. There was a trend that cerebellar alterations were associated with worse TUG dual-task in PD-SCI, but also with higher dual-task gait speed and higher dual-task step-time variability in PD-NC. After multiple comparison corrections, no effects of interest were significant. In summary, no clear set of variables associated with dual-task performance was found that distinguished between PD cognitive classifications in our cohort. Promising but non-significant trends, in particular regarding the TUG dual-task, do however warrant further investigation in future large-scale studies.
Collapse
Affiliation(s)
- Franziska Albrecht
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden.
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Hanna Johansson
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
- Stockholm Sjukhem Foundation, Stockholm, Sweden
| | - Urban Ekman
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Medical Psychology, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lucian Bezuidenhout
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
| | - Joana B Pereira
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Erika Franzén
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
- Stockholm Sjukhem Foundation, Stockholm, Sweden
| |
Collapse
|
6
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Maggi G, Giacobbe C, Vitale C, Amboni M, Obeso I, Santangelo G. Theory of mind in mild cognitive impairment and Parkinson's disease: The role of memory impairment. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:156-170. [PMID: 38049608 PMCID: PMC10827829 DOI: 10.3758/s13415-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Social cognition is impaired in Parkinson's disease (PD). Whether social cognitive impairment (iSC) is a by-product of the underlying cognitive deficits in PD or a process independent of cognitive status is unknown. To this end, the present study was designed to investigate the weight of specific cognitive deficits in social cognition, considering different mild cognitive impairment subtypes of PD (PD-MCI). METHODS Fifty-eight PD patients underwent a neuropsychological battery assessing executive functions, memory, language, and visuospatial domains, together with social cognitive tests focused on theory of mind (ToM). Patients were divided into subgroups according to their clinical cognitive status: amnestic PD-MCI (PD-aMCI, n = 18), non-amnestic PD-MCI (PD-naMCI, n = 16), and cognitively unimpaired (PD-CU, n = 24). Composite scores for cognitive and social domains were computed to perform mediation analyses. RESULTS Memory and language impairments mediated the effect of executive functioning in social cognitive deficits in PD patients. Dividing by MCI subgroups, iSC occurred more frequently in PD-aMCI (77.8%) than in PD-naMCI (18.8%) and PD-CU (8.3%). Moreover, PD-aMCI performed worse than PD-CU in all social cognitive measures, whereas PD-naMCI performed worse than PD-CU in only one subtype of the affective and cognitive ToM tests. CONCLUSIONS Our findings suggest that ToM impairment in PD can be explained by memory dysfunction that mediates executive control. ToM downsides in the amnesic forms of PD-MCI may suggest that subtle changes in social cognition could partly explain future transitions into dementia. Hence, the evaluation of social cognition in PD is critical to characterize a possible behavioral marker of cognitive decline.
Collapse
Affiliation(s)
- Gianpaolo Maggi
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| | - Chiara Giacobbe
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy
| | - Carmine Vitale
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Motor Sciences and Wellness, University "Parthenope, Naples, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Ignacio Obeso
- HM Hospitales - Centro Integral de Neurociencias AC HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Avda. Carlos V, 70. 28938, Móstoles, Madrid, Spain.
- Department of Psychobiology and Methods on Behavioural Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
8
|
Hajebrahimi F, Budak M, Saricaoglu M, Temel Z, Demir TK, Hanoglu L, Yildirim S, Bayraktaroglu Z. Functional neural networks stratify Parkinson's disease patients across the spectrum of cognitive impairment. Brain Behav 2024; 14:e3395. [PMID: 38376051 PMCID: PMC10808882 DOI: 10.1002/brb3.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Cognitive impairment (CI) is a significant non-motor symptoms in Parkinson's disease (PD) that often precedes the emergence of motor symptoms by several years. Patients with PD hypothetically progress from stages without CI (PD-normal cognition [NC]) to stages with Mild CI (PD-MCI) and PD dementia (PDD). CI symptoms in PD are linked to different brain regions and neural pathways, in addition to being the result of dysfunctional subcortical regions. However, it is still unknown how functional dysregulation correlates to progression during the CI. Neuroimaging techniques hold promise in discriminating CI stages of PD and further contribute to the biomarker formation of CI in PD. In this study, we explore disparities in the clinical assessments and resting-state functional connectivity (FC) among three CI stages of PD. METHODS We enrolled 88 patients with PD and 26 healthy controls (HC) for a cross sectional clinical study and performed intra- and inter-network FC analysis in conjunction with comprehensive clinical cognitive assessment. RESULTS Our findings underscore the significance of several neural networks, namely, the default mode network (DMN), frontoparietal network (FPN), dorsal attention network, and visual network (VN) and their inter-intra-network FC in differentiating between PD-MCI and PDD. Additionally, our results showed the importance of sensory motor network, VN, DMN, and salience network (SN) in the discriminating PD-NC from PDD. Finally, in comparison to HC, we found DMN, FPN, VN, and SN as pivotal networks for further differential diagnosis of CI stages of PD. CONCLUSION We propose that resting-state networks (RSN) can be a discriminating factor in distinguishing the CI stages of PD and progressing from PD-NC to MCI or PDD. The integration of clinical and neuroimaging data may enhance the early detection of PD in clinical settings and potentially prevent the disease from advancing to more severe stages.
Collapse
Affiliation(s)
- Farzin Hajebrahimi
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physical Therapy and Rehabilitation, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Department of Health Informatics, Rutgers University, School of Health ProfessionsRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Miray Budak
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Ergotherapy, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Center for Molecular and Behavioral NeuroscienceRutgers University‐NewarkNewarkNew JerseyUSA
| | - Mevhibe Saricaoglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Program of Electroneurophysiology, Vocational SchoolIstanbul Medipol UniversityIstanbulTurkey
| | - Zeynep Temel
- Department of PsychologyFatih Sultan Mehmet Vakif UniversityIstanbulTurkey
| | - Tugce Kahraman Demir
- Program of Electroneurophysiology, Vocational SchoolBiruni UniversityIstanbulTurkey
| | - Lutfu Hanoglu
- Department of Neurology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Suleyman Yildirim
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Medical Microbiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
9
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
10
|
Beyond shallow feelings of complex affect: Non-motor correlates of subjective emotional experience in Parkinson's disease. PLoS One 2023; 18:e0281959. [PMID: 36827296 PMCID: PMC9955984 DOI: 10.1371/journal.pone.0281959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023] Open
Abstract
Affective disorders in Parkinson's disease (PD) concern several components of emotion. However, research on subjective feeling in PD is scarce and has produced overall varying results. Therefore, in this study, we aimed to evaluate the subjective emotional experience and its relationship with autonomic symptoms and other non-motor features in PD patients. We used a battery of film excerpts to elicit Amusement, Anger, Disgust, Fear, Sadness, Tenderness, and Neutral State, in 28 PD patients and 17 healthy controls. Self-report scores of emotion category, intensity, and valence were analyzed. In the PD group, we explored the association between emotional self-reported scores and clinical scales assessing autonomic dysregulation, depression, REM sleep behavior disorder, and cognitive impairment. Patient clustering was assessed by considering relevant associations. Tenderness occurrence and intensity of Tenderness and Amusement were reduced in the PD patients. Tenderness occurrence was mainly associated with the overall cognitive status and the prevalence of gastrointestinal symptoms. In contrast, the intensity and valence reported for the experience of Amusement correlated with the prevalence of urinary symptoms. We identified five patient clusters, which differed significantly in their profile of non-motor symptoms and subjective feeling. Our findings further suggest the possible existence of a PD phenotype with more significant changes in subjective emotional experience. We concluded that the subjective experience of complex emotions is impaired in PD. Non-motor feature grouping suggests the existence of disease phenotypes profiled according to specific deficits in subjective emotional experience, with potential clinical implications for the adoption of precision medicine in PD. Further research on larger sample sizes, combining subjective and physiological measures of emotion with additional clinical features, is needed to extend our findings.
Collapse
|
11
|
Hulzinga F, Seuthe J, D'Cruz N, Ginis P, Nieuwboer A, Schlenstedt C. Split-Belt Treadmill Training to Improve Gait Adaptation in Parkinson's Disease. Mov Disord 2023; 38:92-103. [PMID: 36239376 DOI: 10.1002/mds.29238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Gait deficits in people with Parkinson's disease (PD) are triggered by circumstances requiring gait adaptation. The effects of gait adaptation training on a split-belt treadmill (SBT) are unknown in PD. OBJECTIVE We investigated the effects of repeated SBT versus tied-belt treadmill (TBT) training on retention and automaticity of gait adaptation and its transfer to over-ground walking and turning. METHODS We recruited 52 individuals with PD, of whom 22 were freezers, in a multi-center randomized single-blind controlled study. Training consisted of 4 weeks of supervised treadmill training delivered three times per week. Tests were conducted pre- and post-training and at 4-weeks follow-up. Turning (primary outcome) and gait were assessed over-ground and during a gait adaptation protocol on the treadmill. All tasks were performed with and without a cognitive task. RESULTS We found that SBT-training improved gait adaptation with moderate to large effects sizes (P < 0.02) compared to TBT, effects that were sustained at follow-up and during dual tasking. However, better gait adaptation did not transfer to over-ground turning speed. In both SBT- and TBT-arms, over-ground walking and Movement Disorder Society-Unified Parkinson's Disease Rating Scale III (MDS-UPDRS-III scores were improved, the latter of which reached clinically meaningful effects in the SBT-group only. No impact was found on freezing of gait. CONCLUSION People with PD are able to learn and retain the ability to overcome asymmetric gait-speed perturbations on a treadmill remarkably well, but seem unable to generalize these skills to asymmetric gait off-treadmill. Future study is warranted into gait adaptation training to boost the transfer of complex walking skills. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Femke Hulzinga
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Jana Seuthe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Pieter Ginis
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Christian Schlenstedt
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Zheng J, Jiao Z, Dai J, Liu T, Shi H. Abnormal cerebral micro-structures in end-stage renal disease patients related to mild cognitive impairment. Eur J Radiol 2022; 157:110597. [DOI: 10.1016/j.ejrad.2022.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|