1
|
Siva K, Ponnusamy P, Chavda V, Montemurro N. The Effect of Dopaminergic Therapy in Parkinson's Disease: A Graph Theory Analysis. Brain Sci 2025; 15:370. [PMID: 40309843 PMCID: PMC12025957 DOI: 10.3390/brainsci15040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Dopaminergic therapy (DT) is the gold standard pharmacological treatment for Parkinson's disease (PD). Currently, understanding the neuromodulation effect in the brain of PD after DT is important for doctors to optimize doses and identify the adverse effects of medication. The objective of this study is to investigate the brain connectivity alteration with and without DT in PD using resting-state EEG. Methods: Graph theory (GT) is an efficient technique for analyzing brain connectivity alteration in healthy and patient groups. We applied GT analyses on three groups, namely healthy control (HC), Parkinson with medication OFF (PD-OFF), and Parkinson with medication ON (PD-ON). Results: Using the clustering coefficient (CC), participation coefficient (PC), and small-worldness (SW) properties of GT, we showed that PD-ON patients' brain connectivity normalized towards healthy group brain connectivity due to DT. This normalization effect appeared in the brain connectivity of all EEG frequency bands, such as theta, alpha, beta-1, beta-2, and gamma except the delta band. We also analyzed region-wise brain connectivity between 10 regions of interest (ROIs) (right and left frontal, right and left temporal, right and left parietal, right and left occipital, upper and lower midline regions) at the scalp level and compared across conditions. During PD-ON, we observed a significant decrease in alpha band connectivity between right frontal and left parietal (p-value 0.0432) and right frontal and left occipital (p-value 0.008) as well as right frontal and right temporal (p-value 0.041). Conclusion: These findings offer new insights into how dopaminergic therapy modulates brain connectivity across frequency bands and highlight the continuous elevation of both the segregation and small-worldness of the delta band even after medication as a potential biomarker for adverse effects due to medication. Additionally, reduced frontal alpha band connectivity is associated with cognitive impairment and levodopa-induced dyskinesia, highlighting its potential role in Parkinson's disease progression. This study underscores the need for personalized treatments that address both motor and non-motor symptoms in PD patients.
Collapse
Affiliation(s)
- Karthik Siva
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Palanisamy Ponnusamy
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Vishal Chavda
- Department of Medicine and Critical Care, Multispeciality, Trauma and ICCU Centre, Sardar Hospital, Ahmedabad 380024, India;
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
- EndoCAS Interdipartimental Center, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
2
|
Wang Z, Xiang L, Zhang R. P300 intention recognition based on phase lag index (PLI)-rich-club brain functional network. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:045116. [PMID: 38624364 DOI: 10.1063/5.0202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Brain-computer interface (BCI) technology based on P300 signals has a broad application prospect in the assessment and diagnosis of clinical diseases and game control. The paper of selecting key electrodes to realize a wearable intention recognition system has become a hotspot for scholars at home and abroad. In this paper, based on the rich-club phenomenon that exists in the process of intention generation, a phase lag index (PLI)-rich-club-based intention recognition method for P300 is proposed. The rich-club structure is a network consisting of electrodes that are highly connected with other electrodes in the process of P300 generation. To construct the rich-club network, this paper uses PLI to construct the brain functional network, calculates rich-club coefficients of the network in the range of k degrees, initially identifies rich-club nodes based on the feature of node degree, and then performs a descending order of betweenness centrality and identifies the nodes with larger betweenness centrality as the specific rich-club nodes, extracts the non-linear features and frequency domain features of Rich-club nodes, and finally uses support vector machine for classification. The experimental results show that the range of rich-club coefficients is smaller with intent compared to that without intent. Validation was performed on the BCI Competition III dataset by reducing the number of channels to 17 and 16 for subject A and subject B, with recognition quasi-departure rates of 96.93% and 94.93%, respectively, and on the BCI Competition II dataset by reducing the number of channels to 17 for subjects, with a recognition accuracy of 95.50%.
Collapse
Affiliation(s)
- Zhongmin Wang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Xi'an Key Laboratory of Big Data and Intelligent Computing, Xi'an 710121, Shaanxi, China
| | - Leihua Xiang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
| | - Rong Zhang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Xi'an Key Laboratory of Big Data and Intelligent Computing, Xi'an 710121, Shaanxi, China
| |
Collapse
|
3
|
Shu Z, Wang J, Cheng Y, Lu J, Lin J, Wang Y, Zhang X, Yu Y, Zhu Z, Han J, Wu J, Yu N. fNIRS-based graph frequency analysis to identify mild cognitive impairment in Parkinson's disease. J Neurosci Methods 2024; 402:110031. [PMID: 38040127 DOI: 10.1016/j.jneumeth.2023.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Early identification of mild cognitive impairment (MCI) is essential for its treatment and the prevention of dementia in Parkinson's disease (PD). Existing approaches are mostly based on neuropsychological assessments, while brain activation and connection have not been well considered. NEW METHOD This paper presents a neuroimaging-based graph frequency analysis method and the generated features to quantify the brain functional neurodegeneration and distinguish between PD-MCI patients and healthy controls. The Stroop color-word experiment was conducted with 20 PD-MCI patients and 34 healthy controls, and the brain activation was recorded with functional near-infrared spectroscopy (fNIRS). Then, the functional brain network was constructed based on Pearson's correlation coefficient calculation between every two fNIRS channels. Next, the functional brain network was represented as a graph and decomposed in the graph frequency domain through the graph Fourier transform (GFT) to obtain the eigenvector matrix. Total variation and weighted zero crossings of eigenvectors were defined and integrated to quantify functional interaction between brain regions and the spatial variability of the brain network in specific graph frequency ranges, respectively. After that, the features were employed in training a support vector machine (SVM) classifier. RESULTS The presented method achieved a classification accuracy of 0.833 and an F1 score of 0.877, significantly outperforming existing methods and features. COMPARISON WITH EXISTING METHODS Our method provided improved classification performance in the identification of PD-MCI. CONCLUSION The results suggest that the presented graph frequency analysis method well identify PD-MCI patients and the generated features promise functional brain biomarkers for PD-MCI diagnosis.
Collapse
Affiliation(s)
- Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China
| | - Yuanyuan Cheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China; Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China
| | - Yue Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Zhizhong Zhu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300370, China; Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300350, China.
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.
| |
Collapse
|
4
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|