1
|
Moura J, Lopes J, Freitas C, Samões R, Damásio J. Anti-NMDAr associated segmental dystonia after COVID19: Case report and literature review. Parkinsonism Relat Disord 2024; 129:107187. [PMID: 39489101 DOI: 10.1016/j.parkreldis.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Affiliation(s)
- João Moura
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto, Portugal; Unit of Multidisciplinary Research in Biomedicine (UMIB), ICBAS, University of Porto, Porto, Portugal
| | - Joana Lopes
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Cristina Freitas
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Raquel Samões
- Unit of Multidisciplinary Research in Biomedicine (UMIB), ICBAS, University of Porto, Porto, Portugal; Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto, Portugal; CGPP-IBMC, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; UnIGENe, IBMC, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Kilic-Berkmen G, Scorr LM, Defazio G, Jinnah HA. Thyroid disease and cervical dystonia. Parkinsonism Relat Disord 2024; 126:106082. [PMID: 38458834 PMCID: PMC12053527 DOI: 10.1016/j.parkreldis.2024.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Affiliation(s)
- G Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - L M Scorr
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - G Defazio
- Department of Translational Biomedicine and Neuroscience, Aldo Moro University of Bari, Bari, Italy
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|