1
|
Hu X, Cao Y, Meng Y, Hou M. A novel modulation of structural and functional changes of mouse bone marrow derived dendritic cells (BMDCs) by interleukin-2(IL-2). Hum Vaccin Immunother 2015; 11:516-21. [PMID: 25622186 DOI: 10.1080/21645515.2015.1009336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.
Collapse
Affiliation(s)
- Xiaofang Hu
- a Department of Clinical Detection ; General Hospital of Shenyang Military Command ; Shenyang , China
| | | | | | | |
Collapse
|
2
|
Chera M, Hamel Y, Baillou C, Touil S, Guillot-Delost M, Charlotte F, Kossir L, Simonin G, Maury S, Cohen JL, Lemoine FM. Generation of Human Alloantigen-Specific Regulatory T Cells under Good Manufacturing Practice-Compliant Conditions for Cell Therapy. Cell Transplant 2015; 24:2527-40. [DOI: 10.3727/096368914x683566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural regulatory T cells (Tregs) may have a great therapeutic potential to induce tolerance in allogeneic cells and organ transplantations. In mice, we showed that alloantigen-specific Tregs (spe-Tregs) were more efficient than polyclonal Tregs (poly-Tregs) in controlling graft-versus-host disease (GVHD). Here we describe a clinical-grade compliant method for generating human spe-Tregs. Tregs were enriched from leukapheresis products with anti-CD25 immunomagnetic beads, primed twice by allogeneic mature monocyte-derived dendritic cells (mDCs), and cultured during 3 weeks in medium containing interleukin 2 (IL-2), IL-15, and rapamycin. After 3 weeks of culture, final cell products were expanded 8.3-fold from the initial CD25+ purifications. Immunophenotypic analyses of final cells indicate that they were composed of 88 ± 2.6% of CD4+ T cells, all expressing Treg-specific markers (FOXP3, Helios, GARP, LAP, and CD152). Spe-Tregs were highly suppressive in vitro and also in vivo using a xeno-GVHD model established in immunodeficient mice. The specificity of their suppressive activity was demonstrated on their ability to significantly suppress the proliferation of autologous effector T cells stimulated by the same mDCs compared to third-party mDCs. Our data provide evidence that functional alloantigen Tregs can be generated under clinical-grade compliant conditions. Taking into account that 130 × 106 CD25+ cells can be obtained at large scale from standard leukapheresis, our cell process may give rise to a theoretical final number of 1 × 109 spe-Tregs. Thus, using our strategy, we can propose to prepare spe-Tregs for clinical trials designed to control HLA-mismatched GVHD or organ transplantation rejection.
Collapse
Affiliation(s)
- Mustapha Chera
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Yamina Hamel
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
| | - Claude Baillou
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| | - Soumia Touil
- CNRS, UMR 7211, Immunology Immunopathology and Immunotherapy, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| | - Frédéric Charlotte
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Pathology, Paris, France
| | - Laila Kossir
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Ghislaine Simonin
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Sébastien Maury
- AP-HP, Henri-Mondor Hospital, Department of Clinical Hematology, Créteil, France
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- INSERM, U955, Team 21, Créteil, France
| | - José L. Cohen
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- INSERM, U955, Team 21, Créteil, France
- AP-HP, Henri-Mondor - A. Chenevier Hospital, CIC-BT-504, Créteil, France
| | - François M. Lemoine
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| |
Collapse
|