1
|
Mestrum SGC, Roanalis BYV, de Wit NCJ, Drent RJM, Boonen BT, van Hemert WLW, Hopman AHN, Ramaekers FCS, Leers MPG. MDS and AML show elevated fractions of CD34-positive blast cell populations with a high anti-apoptotic versus proliferation ratio. Leuk Res 2024; 142:107520. [PMID: 38776565 DOI: 10.1016/j.leukres.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
This study investigates the intertwined processes of (anti-)apoptosis and cell proliferation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Utilizing antibodies to Bcl-2 and Ki-67, the CD34-positive blast cell compartments in bone marrow aspirates from 50 non-malignant cases, 25 MDS patients, and 25 AML patients were analyzed for their anti-apoptotic and proliferative cell fractions through ten-color flow cytometry. MDS patients exhibited a significantly increased anti-apoptotic (p=0.0014) and reduced proliferative cell fraction (p=0.0030) in their blast cell population as compared to non-malignant cases. AML patients showed an even more exacerbated trend than MDS patients. The resulting Bcl-2:Ki-67 cell fraction ratios in MDS and AML were significantly increased as compared to the non-malignant cases (p=0.0004 and p<0.0001, respectively). AML patients displayed, however, a high degree of variability in their anti-apoptotic and proliferation index, attributed to heterogeneity in maturation stage and severity of the disease at diagnosis. Using double-labeling for Bcl-2 and Ki-67 it could be shown that besides blast cells with a mutually exclusive Ki-67 and Bcl-2 expression, also blast cells concurrently exhibiting anti-apoptotic and proliferative marker expression were found. Integrating these two dynamic markers into MDS and AML diagnostic workups may enable informed conclusions about their biological behavior, facilitating individualized therapy decisions for patients.
Collapse
Affiliation(s)
- Stefan G C Mestrum
- Department of Genetics & Cell Biology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - B Y Vanblarcum Roanalis
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Norbert C J de Wit
- Central Diagnostic Laboratory (CDL), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roosmarie J M Drent
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Bert T Boonen
- Department of Orthopedic Surgery, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Wouter L W van Hemert
- Department of Orthopedic Surgery, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Anton H N Hopman
- Department of Genetics & Cell Biology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Frans C S Ramaekers
- Department of Genetics & Cell Biology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands; Nordic-MUbio, an Absolute Biotech Company, Susteren, the Netherlands
| | - Math P G Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands; Department of Environmental Sciences, Faculty of Science, Open Universiteit, Heerlen, the Netherlands.
| |
Collapse
|
2
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Mestrum SGC, Vanblarcum RBY, Drent RJM, Boonen BT, van Hemert WLW, Ramaekers FCS, Hopman AHN, Leers MPG. Proliferative and anti‐apoptotic fractions in maturing hematopoietic cell lineages and their role in homeostasis of normal bone marrow. Cytometry A 2022; 101:552-563. [PMID: 35429122 PMCID: PMC9540078 DOI: 10.1002/cyto.a.24558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Recent developments in clinical flow cytometry allow the simultaneous assessment of proliferative and anti‐apoptotic activity in the different hematopoietic cell lineages and during their maturation process. This can further advance the flow cytometric diagnosis of myeloid malignancies. In this study we established indicative reference values for the Ki‐67 proliferation index and Bcl‐2 anti‐apoptotic index in blast cells, as well as maturing erythroid, myeloid, and monocytic cells from normal bone marrow (BM). Furthermore, the cell fractions co‐expressing both proliferation and anti‐apoptotic markers were quantified. Fifty BM aspirates from femoral heads of patients undergoing hip replacement were included in this study. Ten‐color/twelve‐parameter flow cytometry in combination with a software‐based maturation tool was used for immunophenotypic analysis of Ki‐67 and Bcl‐2 positive fractions during the erythro‐, myelo‐, and monopoiesis. Indicative reference values for the Ki‐67 and Bcl‐2 positive fractions were established for different relevant hematopoietic cell populations in healthy BM. Ki‐67 and Bcl‐2 were equally expressed in the total CD34 positive blast cell compartment and 30% of Ki‐67 positive blast cells also showed Bcl‐2 positivity. The Ki‐67 and Bcl‐2 positive fractions were highest in the more immature erythroid, myeloid and monocytic cells. Both fractions then gradually declined during the subsequent maturation phases of these cell lineages. We present a novel application of an earlier developed assay that allows the simultaneous determination of the Ki‐67 proliferative and Bcl‐2 anti‐apoptotic indices in maturing hematopoietic cell populations of the BM. Their differential expression levels during the maturation process were in accordance with the demand and lifespan of these cell populations. The indicative reference values established in this study can act as a baseline for further cell biological and biomedical studies involving hematological malignancies.
Collapse
Affiliation(s)
- Stefan G. C. Mestrum
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Roanalis B. Y. Vanblarcum
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Roosmarie J. M. Drent
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Bert T. Boonen
- Department of Orthopedic Surgery Zuyderland Medical Center Heerlen The Netherlands
| | | | - Frans C. S. Ramaekers
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
- Nordic‐MUbio, Susteren The Netherlands
| | - Anton H. N. Hopman
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
| | - Math P. G. Leers
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| |
Collapse
|
4
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
5
|
Mansoor A, Mansoor MO, Patel JL, Zhao S, Natkunam Y, Bieker JJ. KLF1/EKLF expression in acute leukemia is correlated with chromosomal abnormalities. Blood Cells Mol Dis 2020; 83:102434. [PMID: 32311573 DOI: 10.1016/j.bcmd.2020.102434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
KLF1 (EKLF) is a master regulator of erythropoiesis and controls expression of a wide array of target genes. We interrogated human tissue microarray samples via immunohistological analysis to address whether levels of KLF1 protein are associated with leukemia. We have made the unexpected findings that higher KLF1 levels are correlated with cells containing abnormal chromosomes, and that high KLF1 expression is not limited to acute myeloid leukemia (AML) associated with erythroid/megakaryoblastic differentiation. Expression of KLF1 is associated with poor survival. Further analyses reveal that KLF1 directly regulates a number of genes that play a role in chromosomal integrity. Together these results suggest that monitoring KLF1 levels may provide a new marker for risk stratification and prognosis in patients with AML.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Mohammad Omer Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Jay L Patel
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - James J Bieker
- Department of Cell, Developmental, & Regenerative Biology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Rai S, Espinoza JL, Morita Y, Tanaka H, Matsumura I. Severe Eosinophilia in Myelodysplastic Syndrome With a Defined and Rare Cytogenetic Abnormality. Front Immunol 2019; 9:3031. [PMID: 30687305 PMCID: PMC6334338 DOI: 10.3389/fimmu.2018.03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group clonal disorders of hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis that lead to variable grades of impaired blood cell production. Chromosomal aberrations are often detected in MDS patients and thus cytogenetic analysis is useful for the diagnosis of these disorders. Common recurring chromosomal defects, such as the −5/5q- and −7/7q- are relatively well characterized cytogenetic abnormalities in MDS, however, the biological significance of uncommon cytogenetic alterations is unknown. We report here, two cases of peripheral blood and bone marrow hypereosinophilia in patients with MDS harboring the unbalanced translocation der(1;7)(q10;p10), a poorly characterized cytogenetic abnormality that is found in certain myeloid malignancies, including MDS. The patients reported here presented hypereosinophilia that was refractory to steroids and cytotoxic therapy, leading to severe target tissue damage that ultimately resulted in fatal end-organ failure. Potential roles of the der(1;7)(q10;p10) aberrations in the pathogenesis of aggressive eosinophilia and disease prognosis are discussed here.
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| |
Collapse
|
7
|
Abstract
The introduction and advances on next-generation sequencing have led to novel ways to integrate simultaneous assessment of multiple target genes in routine laboratory analysis. Assessment of myeloid neoplasms with targeted next-generation sequencing panels shows evidence to improve diagnosis, assist therapeutic decisions, provide better information about prognosis, and better detection of minimal residual disease. Herein, we provide information for application and utilization of next-generation sequencing studies with a focus on the most important mutations in acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasms, and other myelodysplastic / myeloproliferative neoplasms in order to integrate them into the daily clinical practice.
Collapse
Affiliation(s)
- Fulya Öz Puyan
- Department of Pathology, Trakya University School of Medicine, Edirne, Turkey
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, California, USA
| |
Collapse
|
8
|
Diagnostic, Prognostic, and Predictive Utility of Recurrent Somatic Mutations in Myeloid Neoplasms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 17S:S62-S74. [PMID: 28760304 DOI: 10.1016/j.clml.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 02/02/2023]
Abstract
The classification and risk stratification of myeloid neoplasms, including acute myeloid leukemia, myelodysplastic syndromes, myelodysplastic syndromes/myeloproliferative neoplasms, and myeloproliferative neoplasms, have increasingly been guided by molecular genetic abnormalities. Gene expression analysis and next-generation sequencing have led to the ever increasing discovery of somatic gene mutations in myeloid neoplasms. Mutations have been identified in genes involved in epigenetic modification, RNA splicing, transcription factors, DNA repair, and the cohesin complex. These new somatic/acquired gene mutations have refined the classification of myeloid neoplasms and have been incorporated into the 2016 update of the World Health Organization (WHO) classification and the National Comprehensive Cancer Network guidelines. They have also been helpful in the development of new targeted therapeutic agents. In the present review, we describe the clinical utility of recently identified, clinically important gene mutations in myeloid neoplasms, including those incorporated in the 2016 update of the WHO classification.
Collapse
|