1
|
Zhang HQ, Kong F, Kong X, Jiang T, Ma M, Zheng S, Guo J, Xie K. Loss of GATA6-mediated up-regulation of UTX promotes pancreatic tumorigenesis and progression. Genes Dis 2024; 11:921-934. [PMID: 37692474 PMCID: PMC10491869 DOI: 10.1016/j.gendis.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 04/03/2023] Open
Abstract
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), also known as lysine (K)-specific demethylase 6A (KDM6A), functions as a tumor suppressor gene or oncogene depending on the tumor type and context. However, its tumor-suppressive mechanisms remain largely unknown. Here, we investigated the clinical significance and biological effects of UTX expression in pancreatic ductal adenocarcinoma (PDA) and determined the potential mechanisms of its dysregulation. UTX expression and its association with clinicopathologic characteristics of PDA patients were analyzed using immunohistochemistry. UTX mRNA and protein expression and their regulation in PDA cell lines were measured using quantitative polymerase chain reaction and Western blot analyses. The biological functions of UTX in PDA cell growth, migration, and invasion were determined using gain- and loss-of-function assays with both in vitro and in vivo animal models. UTX expression was reduced in human PDA cell lines and specimens. Low UTX expression was associated with poor differentiation and prognosis in PDA. Forced UTX expression inhibited PDA proliferation, migration, and invasion in vitro and PDA growth and metastasis in vivo, whereas knockdown of UTX expression did the opposite. Mechanistically, UTX expression was trans-activated by GATA6 activation. GATA6-mediated PDA progression could be blocked, at least partially, by silencing UTX expression. In conclusion, loss of GATA6-mediated UTX expression was evident in human PDA and restored UTX expression suppressed PDA growth and metastasis. Thus, UTX is a tumor suppressor in PDA and may serve as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Hui-Qing Zhang
- The Third Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330006, China
| | - Fanyang Kong
- Departments of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiangyu Kong
- Departments of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Muyuan Ma
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Shaojiang Zheng
- Hainan Clinical Medical Research Center of the First Affiliated Hospital, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan 570102, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Boicean A, Birsan S, Ichim C, Boeras I, Roman-Filip I, Blanca G, Bacila C, Fleaca RS, Dura H, Roman-Filip C. Has-miR-129-5p's Involvement in Different Disorders, from Digestive Cancer to Neurodegenerative Diseases. Biomedicines 2023; 11:2058. [PMID: 37509697 PMCID: PMC10377727 DOI: 10.3390/biomedicines11072058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At present, it is necessary to identify specific biochemical, molecular, and genetic markers that can reliably aid in screening digestive cancer and correlate with the degree of disease development. Has-miR-129-5p is a small, non-coding molecule of RNA, circulating in plasma, gastric juice, and other biological fluids; it plays a protective role in tumoral growth, metastasis, etc. Furthermore, it is involved in various diseases, from the development of digestive cancer in cases of downregulation to neurodegenerative diseases and depression. Methods: We examined meta-analyses, research, and studies related to miR-129-5-p involved in digestive cancer and its implications in cancer processes, as well as metastasis, and described its implications in neurological diseases. Conclusions: Our review outlines that miR-129-5p is a significant controller of different pathways, genes, and proteins and influences different diseases. Some important pathways include the WNT and PI3K/AKT/mTOR pathways; their dysregulation results in digestive neoplasia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ioana Boeras
- Molecular Biology Laboratory of the Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Grama Blanca
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
3
|
Taherian M, Wang H, Wang H. Pancreatic Ductal Adenocarcinoma: Molecular Pathology and Predictive Biomarkers. Cells 2022; 11:cells11193068. [PMID: 36231030 PMCID: PMC9563270 DOI: 10.3390/cells11193068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis due to the lack of methods or biomarkers for early diagnosis and its resistance to conventional treatment modalities, targeted therapies, and immunotherapies. PDACs are a heterogenous group of malignant epithelial neoplasms with various histomorphological patterns and complex, heterogenous genetic/molecular landscapes. The newly proposed molecular classifications of PDAC based on extensive genomic, transcriptomic, proteomic and epigenetic data have provided significant insights into the molecular heterogeneity and aggressive biology of this deadly disease. Recent studies characterizing the tumor microenvironment (TME) have shed light on the dynamic interplays between the tumor cells and the immunosuppressive TME of PDAC, which is essential to disease progression, as well as its resistance to chemotherapy, newly developed targeted therapy and immunotherapy. There is a critical need for the development of predictive markers that can be clinically utilized to select effective personalized therapies for PDAC patients. In this review, we provide an overview of the histological and molecular heterogeneity and subtypes of PDAC, as well as its precursor lesions, immunosuppressive TME, and currently available predictive molecular markers for patients.
Collapse
Affiliation(s)
- Mehran Taherian
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-563-1846; Fax: +1-713-563-1848
| |
Collapse
|
4
|
Fleury E, Nimir C, D'Alessandro GS. The Breast Tumor Microenvironment: Could Silicone Breast Implant Elicit Breast Carcinoma? BREAST CANCER-TARGETS AND THERAPY 2021; 13:45-58. [PMID: 33488119 PMCID: PMC7815077 DOI: 10.2147/bctt.s294166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023]
Abstract
Complications related to breast implants have received much attention recently. Breast implant-associated anaplastic large cell lymphoma, silicone-induced granuloma of breast implant capsule, and breast implant illness are the main complications reported in the medical literature. However, the literature contains limited evidence regarding the possibility of silicone implants eliciting breast carcinoma. In this manuscript, we propose a theory in which the immune response to silicone breast implant gel bleeding acts as a triggering point for tumor oncogenesis in breast tissue. This hypothesis is derived from our findings of a case of invasive and undifferentiated medullary carcinoma in a patient with a silicone breast implant. The following concepts have been used to support this theory: 1) silicone bleeding from intact breast implants; 2) metaplasia: an adaptation to injury and precursor to dysplasia and cancer; 3) T-cell dysfunction in cancer immunity; 4) inhibitory cells in the tumor microenvironment (TME); 5) morphogenesis and bauplan; and 6) concepts underlying medullary carcinoma. We propose that the inflammatory process in response to silicone particles in the pericapsular glandular tissue favors the development of cellular mutations in specialized epithelial cells. This reverse morphogenesis could have resulted in breast carcinoma of the medullary type in the present case.
Collapse
Affiliation(s)
- Eduardo Fleury
- Service of Radiology, IBCC - Instituto Brasileiro de Controle do Câncer, São Paulo, SP, Brazil
| | - Cristiane Nimir
- Service of Pathology, FEMME - Laboratório da Mulher, São Paulo, SP, Brazil
| | | |
Collapse
|
5
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
6
|
Morani AC, Hanafy AK, Ramani NS, Katabathina VS, Yedururi S, Dasyam AK, Prasad SR. Hereditary and Sporadic Pancreatic Ductal Adenocarcinoma: Current Update on Genetics and Imaging. Radiol Imaging Cancer 2020; 2:e190020. [PMID: 33778702 DOI: 10.1148/rycan.2020190020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a genetically heterogeneous, biologically aggressive malignancy with a uniformly poor prognosis. While most pancreatic cancers arise sporadically, a small subset of PDACs develop in patients with hereditary and familial predisposition. Detailed studies of the rare hereditary syndromes have led to identification of specific genetic abnormalities that contribute to malignancy. For example, germline mutations involving BRCA1, BRCA2, PRSS1, and mismatch repair genes predispose patients to PDAC. While patients with Lynch syndrome develop a rare "medullary" variant of adenocarcinoma, intraductal papillary mucinous tumors are observed in patients with McCune-Albright syndrome. It is now well established that PDACs originate via a multistep progression from microscopic and macroscopic precursors due to cumulative genetic abnormalities. Improved knowledge of tumor genetics and oncologic pathways has contributed to a better understanding of tumor biology with attendant implications on diagnosis, management, and prognosis. In this article, the genetic landscape of PDAC and its precursors will be described, the hereditary syndromes that predispose to PDAC will be reviewed, and the current role of imaging in screening and staging assessment, as well as the potential role of molecular tumor-targeted imaging for evaluation of patients with PDAC and its precursors, will be discussed. Keywords: Abdomen/GI, Genetic Defects, Oncology, Pancreas Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Ajaykumar C Morani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Abdelrahman K Hanafy
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Nisha S Ramani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Venkata S Katabathina
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Sireesha Yedururi
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Anil K Dasyam
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Srinivasa R Prasad
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| |
Collapse
|
7
|
Katabathina VS, Rikhtehgar OY, Dasyam AK, Manickam R, Prasad SR. Genetics of Pancreatic Neoplasms and Role of Screening. Magn Reson Imaging Clin N Am 2018; 26:375-389. [PMID: 30376976 DOI: 10.1016/j.mric.2018.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a wide spectrum of pancreatic neoplasms with characteristic genetic abnormalities, tumor pathways, and histopathology that primarily determine tumor biology, treatment response, and prognosis. Although most pancreatic tumors are sporadic, 10% of neoplasms occur in the setting of distinct hereditary syndromes. Detailed studies of these rare syndromes have allowed researchers to identify a myriad of specific genetic signatures of pancreatic tumors. A better understanding of tumor genomics may have significant clinical implications in the diagnosis and management of patients with pancreatic tumors. Evolving knowledge has paved the way to screening paradigms and protocols in individuals at higher risk of developing pancreatic tumors.
Collapse
Affiliation(s)
- Venkata S Katabathina
- Department of Radiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Omid Y Rikhtehgar
- Department of Radiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Rohan Manickam
- Department of Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler street, Unit 1473, Houston, TX 77030, USA
| | - Srinivasa R Prasad
- Department of Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler street, Unit 1473, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Felsenstein M, Hruban RH, Wood LD. New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Adv Anat Pathol 2018; 25:131-142. [PMID: 28914620 DOI: 10.1097/pap.0000000000000172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is an aggressive disease with a dismal prognosis in dire need of novel diagnostic and therapeutic approaches. The past decade has witnessed an explosion of data on the genetic alterations that occur in pancreatic cancer, as comprehensive next-generation sequencing analyses have been performed on samples from large cohorts of patients. These studies have defined the genomic landscape of this disease and identified novel candidates whose mutations contribute to pancreatic tumorigenesis. They have also clarified the genetic alterations that underlie multistep tumorigenesis in precursor lesions and provided insights into clonal evolution in pancreatic neoplasia. In addition to these important insights into pancreatic cancer biology, these large scale genomic studies have also provided a foundation for the development of novel early detection strategies and targeted therapies. In this review, we discuss the results of these comprehensive sequencing studies of pancreatic neoplasms, with a particular focus on how their results will impact the clinical care of patients with pancreatic cancer.
Collapse
|
9
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017; 8:77028-77040. [PMID: 29100367 PMCID: PMC5652761 DOI: 10.18632/oncotarget.20332] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Patients with localized pancreatic cancer (stage I and stage IIA) have a much higher survival rate than those presenting at later stages, yet early detection remains a challenge to this malignancy. The aim of this study was to evaluate whether exosome miRNA signatures are indicative of localized pancreatic cancer. Exosomes were collected from the conditioned media of pancreatic cancer cell lines and plasma samples of localized pancreatic cancer patients (Stage I-IIA, n=15), and healthy subjects (n=15). Cellular and exosome miRNAs from pancreatic cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome miRNA expression was analyzed by qRT-PCR. We found that certain miRNAs, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes. Consistently, plasma exosome miR-196a and miR-1246 levels were significantly elevated in pancreatic cancer patients as compared to healthy subjects. An analysis of the cancer subtypes indicated that plasma exosome miR-196a is a better indicator of pancreatic ductal adenocarcinoma (PDAC), whereas plasma exosome miR-1246 is significantly elevated in patients with intraductal papillary mucinous neoplasms (IPMN). In contrast, there were no differences in the plasma exosome miR-196a and miR-1246 levels between patients with pancreatic neuroendocrine tumors (NET) and healthy subjects. In conclusion, we demonstrate that certain miRNA species, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes and elevated in plasma exosomes of patients with localized pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Russell G Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| |
Collapse
|
11
|
Su X, He X, Ben Q, Wang W, Song H, Ye Q, Zang Y, Li W, Chen P, Yao W, Yuan Y. Effect of p53 on pancreatic cancer-glucose tolerance abnormalities by regulating transglutaminase 2 in resistance to glucose metabolic stress. Oncotarget 2017; 8:74299-74311. [PMID: 29088786 PMCID: PMC5650341 DOI: 10.18632/oncotarget.19402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PanCa) is an extremely lethal disease characterized by mutations of p53 in up to 70% of cases. Our previous studies have confirmed that hyperglycemia may be the first clinical manifestation for the early diagnosis of PanCa. In this article, we showed that targeted knockdown of TG2 or p53 in tumor cells led to decreased cell survival in response to glucose deprivation, while this phenomenon was abolished by combined inhibition of TG2 and p53. We observed that inhibition of TG2 or p53 sensitized glucose deprivation resistance through an intracellular reactive oxygen species (ROS) pathway and the induction of Bcl-2. Moreover, to understand whether pancreatic cancer cells with TG2 and p53 combined interference had possible effects on pancreatic β cells, we performed studies comparing pancreatic cancer cells with TG2 and p53 combined interference and pancreatic β cells. We discovered that the supernatant of pancreatic cancer cells withTG2 and p53 combined interference decreased cell survival in pancreatic β cells. Following the creation of an orthotopic pancreatic cancer mouse model, we revealed glucose tolerance abnormalities in the pancreatic cancer mouse model with TG2 and p53 combined interference, indicating a possible mechanism for damage of βcells in pancreatic cancer. Taken together, our findings establish roles for TG2 and p53 in response to glucose deprivation in pancreatic cancer cells. The relationship between TG2 and p53 suggests a possible mechanism for glucose tolerance abnormalities-associated pancreatic cancer and could have therapeutic potential for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Xiao Su
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiangyi He
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qiwen Ben
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Weiyi Wang
- Department of Gastroenterology, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qiao Ye
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Weiguang Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ping Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
12
|
Li J, Chen Y, Chen Z, He A, Xie H, Zhang Q, Cai Z, Liu Y, Huang W. SPRY4-IT1: A novel oncogenic long non-coding RNA in human cancers. Tumour Biol 2017; 39:1010428317711406. [PMID: 28651500 DOI: 10.1177/1010428317711406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs are classified as a kind of RNA, which are longer than 200 nucleotides in length and cannot be translated into proteins. Multiple studies have demonstrated that long non-coding RNAs are involved in various cellular processes, including proliferation, differentiation, cell death, and metastasis. Among numerous long non-coding RNAs, we focus on Sprouty4-Intron 1 (SPRY4-IT1), a well-known long non-coding RNA that is overexpressed in various kinds of tumor tissues and cell lines. Accumulating evidences show that SPRY4-IT1 was dysregulated in various cancers, including melanoma, breast cancer, esophageal squamous cell carcinoma, non-small cell lung cancer, gastric cancer, colon cancer, and hepatocellular carcinoma, and amplification of SPRY4-IT1 was associated with different clinicopathological features of cancer patients. Importantly, SPRY4-IT1 exerts important roles in tumor progression and metastasis. However, detailed molecular mechanisms of SPRY4-IT1 in cancer progression and metastasis were poorly understood. In this review, we have focused on the characteristics of SPRY4-IT1 and illustrated the biological function and mechanism of SPRY4-IT1 in cancer development.
Collapse
Affiliation(s)
- Jianfa Li
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- 2 Shantou University Medical College, Shantou, People's Republic of China
| | - Yincong Chen
- 2 Shantou University Medical College, Shantou, People's Republic of China
| | - Zhicong Chen
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- 2 Shantou University Medical College, Shantou, People's Republic of China
| | - Anbang He
- 2 Shantou University Medical College, Shantou, People's Republic of China
- 3 Anhui Medical University, Hefei, People's Republic of China
| | - Haibiao Xie
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- 2 Shantou University Medical College, Shantou, People's Republic of China
| | - Qiaoxiao Zhang
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Zhiming Cai
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- 2 Shantou University Medical College, Shantou, People's Republic of China
- 3 Anhui Medical University, Hefei, People's Republic of China
| | - Yuchen Liu
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Weiren Huang
- 1 Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- 2 Shantou University Medical College, Shantou, People's Republic of China
- 3 Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|