1
|
Zhu H, Sharma AK, Aguilar K, Boghani F, Sarcan S, George M, Ramesh J, Van Der Eerden J, Panda CS, Lopez A, Zhi W, Bollag R, Patel N, Klein K, White J, Thangaraju M, Lokeshwar BL, Singh N, Lokeshwar VB. Simple virus-free mouse models of COVID-19 pathologies and oral therapeutic intervention. iScience 2024; 27:109191. [PMID: 38433928 PMCID: PMC10906509 DOI: 10.1016/j.isci.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
The paucity of preclinical models that recapitulate COVID-19 pathology without requiring SARS-COV-2 adaptation and humanized/transgenic mice limits research into new therapeutics against the frequently emerging variants-of-concern. We developed virus-free models by C57BL/6 mice receiving oropharyngeal instillations of a SARS-COV-2 ribo-oligonucleotide common in all variants or specific to Delta/Omicron variants, concurrently with low-dose bleomycin. Mice developed COVID-19-like lung pathologies including ground-glass opacities, interstitial fibrosis, congested alveoli, and became moribund. Lung tissues from these mice and bronchoalveolar lavage and lung tissues from patients with COVID-19 showed elevated levels of hyaluronic acid (HA), HA-family members, an inflammatory signature, and immune cell infiltration. 4-methylumbelliferone (4-MU), an oral drug for biliary-spasm treatment, inhibits HA-synthesis. At the human equivalent dose, 4-MU prevented/inhibited COVID-19-like pathologies and long-term morbidity; 4-MU and metabolites accumulated in mice lungs. Therefore, these versatile SARS-COV-2 ribo-oligonucleotide oropharyngeal models recapitulate COVID-19 pathology, with HA as its critical mediator and 4-MU as a potential therapeutic for COVID-19.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Anuj K. Sharma
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Karina Aguilar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Faizan Boghani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Semih Sarcan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Michelle George
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Janavi Ramesh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Joshua Van Der Eerden
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Chandramukhi S. Panda
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Aileen Lopez
- Clinical Trials Office, Augusta University, 1521 Pope Avenue, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Roni Bollag
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nikhil Patel
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Kandace Klein
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Joe White
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Dai YH, Li C, Yuan G, Mo W, Chen J, Huang R, Wan Z, Lin D, Zhong X, Li H, Liu L, Shi J. A multicentre study on the clinical characteristics of newborns infected with coronavirus disease 2019 during the omicron wave. Front Pediatr 2023; 11:1192268. [PMID: 37565246 PMCID: PMC10411454 DOI: 10.3389/fped.2023.1192268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Objective To investigate the clinical characteristics and outcomes of newborns infected with coronavirus disease 2019 (COVID-19) during the Omicron wave. Methods From December 1, 2022, to January 4, 2023, clinical data were collected from neonates with COVID-19 who were admitted to 10 hospitals in Foshan City, China. Their epidemiological histories, clinical manifestations and outcomes were analysed. The neonates were divided into symptomatic and asymptomatic groups. The t test or χ2 test was used for comparisons between groups. Results A total of 286 children were diagnosed, including 166 males, 120 females, 273 full-term infants and 13 premature infants. They were 5.5 (0-30) days old on average when they were admitted to the hospital. These children had contact with patients who tested positive for COVID-19 and were infected through horizontal transmission. This study included 33 asymptomatic and 253 symptomatic patients, among whom 143 were diagnosed with upper respiratory tract infections and 110 were diagnosed with pneumonia. There were no severe or critical patients. Fever (220 patients) was the most common clinical manifestation, with a duration of 1.1 (1-6) days. The next most common clinical manifestations were cough with nasal congestion or runny nose (4 patients), cough (34 patients), poor appetite (7 patients), shortness of breath (15 patients), and poor general status (1 patient). There were no significant abnormalities in routine blood tests among the neonates infected with COVID-19 except for mononucleosis. However, compared with the asymptomatic group, in the symptomatic group, the leukocyte and neutrophil granulocyte counts were significantly decreased, and the monocyte count was significantly increased. C-reactive protein (CRP) levels were significantly increased (≥10 mg/L) in 9 patients. Myocardial enzyme, liver function, kidney function and other tests showed no obvious abnormalities. Conclusions In this study, neonates infected with the Omicron variant were asymptomatic or had mild disease. Symptomatic patients had lower leucocyte and neutrophil levels than asymptomatic patients.
Collapse
Affiliation(s)
- Yi-Heng Dai
- Department of Neonatal, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity &Child Healthcare Hospital), Foshan, China
| | - Caihuan Li
- Department of Neonatal, Shunde Hospital of Southern Medical University, Foshan, China
| | - Guilong Yuan
- Department of Neonatal, Nanhai Maternity & Child Healthcare Hospital of Foshan, Foshan, China
| | - Wenhui Mo
- Department of Neonatal, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Jun Chen
- Department of Neonatal, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity &Child Healthcare Hospital), Foshan, China
| | - Runzhong Huang
- Department of Neonatal, Shunde Women’s and Children’s Hospital of Guangdong Medical University, Foshan, China
| | - Zhonghe Wan
- Department of Neonatal, The Sixth Affiliated Hospital of South China University of Technology, Foshan, China
| | - Duohua Lin
- Department of Neonatal, Foshan Gaoming District People’s Hospital, Foshan, China
| | - Xiangming Zhong
- Department of Neonatal, Sanshui Maternal and Child Health Hospital of Foshan City, Foshan, China
| | - Huanqiong Li
- Department of Neonatal, Sanshui District People’s Hospital of Foshan, Foshan, China
| | - Ling Liu
- Department of Neonatal, The Third Affiliated Hospital of Guangdong Medical University, Foshan, China
| | - Jipeng Shi
- Department of Neonatal, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity &Child Healthcare Hospital), Foshan, China
| |
Collapse
|