1
|
Napolitano A, Spiezia L, Biolo M, Radu CM, Toffanin S, Campello E, Simioni P. Anti-platelet Factor 4 Antibody-Mediated Disorders: An Updated Narrative Review. Semin Thromb Hemost 2025; 51:578-593. [PMID: 39884292 DOI: 10.1055/a-2528-5425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Anti-platelet factor 4 (PF4) antibody-mediated disorders are a heterogeneous group of diseases characterized by the presence of highly pathogenic immunoglobulins G directed against PF4 and/or PF4/heparin complexes. These antibodies are able to activate platelets, neutrophils, and monocytes, thus resulting in thrombocytopenia and a hypercoagulable state. Five different forms of anti-PF4 antibody-mediated disorders have been identified: (1) classic heparin-induced thrombocytopenia (HIT) mediated by heparin and certain polyanionic drugs; (2) autoimmune HIT characterized by the presence of anti-PFA/polyanion antibodies that can strongly activate platelets even in the absence of heparin; (3) spontaneous HIT characterized by thrombocytopenia and thrombosis without proximate exposure to heparin, with two subtypes: (a) post-total knee arthroplasty and cardiac surgery using cardiopulmonary bypass or extracorporeal membrane oxygenation and (b) postinfections; (4) vaccine-induced immune thrombotic thrombocytopenia (VITT) characterized by thrombocytopenia, arterial and venous thrombosis, or secondary hemorrhage after receiving adenoviral vector vaccines for coronavirus disease 2019; (5) VITT-like disorders triggered by adenoviral infections. Although extremely rare and largely unknown, there has been growing interest in the VITT syndrome in recent years due to its clinical relevance. Timely detection of these antibodies is crucial for the diagnosis and treatment of anti-PF4 antibody-mediated disorders, via anti-PF4 antibody immunoassays using several antibody capture systems (e.g., enzyme-linked immunosorbent assay-based, particle gel, turbidimetry) and functional assays (e.g., serotonin release assay or heparin-induced platelet activation). We aimed to present the latest on laboratory findings, clinical characteristics, and therapeutic approaches for anti-PF4 antibody-mediated disorders.
Collapse
Affiliation(s)
- Angela Napolitano
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Luca Spiezia
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Marta Biolo
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Claudia Maria Radu
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Serena Toffanin
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Elena Campello
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| | - Paolo Simioni
- First Chair of Internal Medicine, Department of Medicine, University-Hospital of Padua Medical School, Padua, Italy
| |
Collapse
|
2
|
Müller L, Dabbiru VAS, Rutten L, Bos R, Zahn R, Handtke S, Thiele T, Palicio M, Esteban O, Broto M, Gordon TP, Greinacher A, Wang JJ, Schönborn L. Recombinant Anti-PF4 Antibodies Derived from Patients with Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT) Facilitate Research and Laboratory Diagnosis of VITT. Vaccines (Basel) 2024; 13:3. [PMID: 39852782 PMCID: PMC11769302 DOI: 10.3390/vaccines13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Adenoviral vector-based vaccines against COVID-19 rarely cause vaccine-induced immune thrombocytopenia and thrombosis (VITT), a severe adverse reaction caused by IgG antibodies against platelet factor 4 (PF4). To study VITT, patient samples are crucial but have become a scarce resource. Recombinant antibodies (rAbs) derived from VITT patient characteristic amino acid sequences of anti-PF4 IgG are an alternative to study VITT pathophysiology. METHODS Amino acid sequences of the variable region of immunoglobulin light and heavy chain of anti-PF4 IgG derived from VITT patients were obtained by mass spectrometry sequencing and rAbs were synthetized by reverse-engineering. Six different rAbs were produced: CR23003, CR23004, and CR23005 (from a patient vaccinated with Jcovden, Johnson & Johnson-Janssen (Beerse, Belgium)), CR22046, and CR22050 and CR22066 (from two different patients vaccinated with Vaxzevria, AstraZeneca (Cambridge, UK)). These rAbs were further characterized using anti-PF4 and anti-PF4/heparin IgG ELISAs, rapid anti-PF4 and anti-PF4/polyanion chemiluminescence assays, and PF4-induced platelet activation assay (PIPA) and their capacity to induce procoagulant platelets. RESULTS rAbs bound to PF4 alone, but not to PF4/polyanion complexes in rapid chemiluminescence assays. Chemiluminescence assays and both anti-PF4 IgG and anti-PF4 IgG/heparin ELISA showed concentration-dependent PF4 binding of all six rAbs, however, with different reactivities among them. PIPA showed a similar, concentration-dependent platelet activation pattern. rAbs varied in their reactivity and the majority of the tested rAbs were able to induce procoagulant platelets. CONCLUSIONS The six rAbs derived from VITT patients reflect VITT-typical binding capacities and the ability to activate platelets. Therefore, these rAbs offer an attractive new option to study VITT pathophysiology.
Collapse
Affiliation(s)
- Luisa Müller
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Venkata A. S. Dabbiru
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Lucy Rutten
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Rinke Bos
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Roland Zahn
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Stefan Handtke
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Thomas Thiele
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Marta Palicio
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Olga Esteban
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Marta Broto
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Tom Paul Gordon
- Department of Immunology, College of Medicine and Public Health, Flinders University and SA Pathology, Bedford Park, Adelaide, SA 5042, Australia; (T.P.G.); (J.J.W.)
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Jing Jing Wang
- Department of Immunology, College of Medicine and Public Health, Flinders University and SA Pathology, Bedford Park, Adelaide, SA 5042, Australia; (T.P.G.); (J.J.W.)
| | - Linda Schönborn
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| |
Collapse
|
3
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Favaloro EJ. Evolution of Hemostasis Testing: A Personal Reflection Covering over 40 Years of History. Semin Thromb Hemost 2024; 50:8-25. [PMID: 36731486 DOI: 10.1055/s-0043-1761487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is no certainty in change, other than change is certain. As Seminars in Thrombosis and Hemostasis celebrates 50 years of publication, I felt it appropriate to reflect on my own 40-year plus scientific career. My career in the thrombosis and hemostasis field did not start until 1987, but the subsequent 35 years reflected a period of significant change in associated disease diagnostics. I started in the Westmead Hospital "coagulation laboratory" when staff were still performing manual clotting tests, using stopwatches, pipettes, test tubes, and a water bath, which we transported to the hospital outpatient department to run our weekly warfarin clinic. Several hemostasis instruments have come and gone, including the Coag-A-Mate X2, the ACL-300R, the MDA-180, the BCS XP, and several StaR Evolution analyzers. Some instruments remain, including the PFA-100, PFA-200, the AggRAM, the CS-5100, an AcuStar, a Hydrasys gel system, and two ACL-TOP 750s. We still have a water bath, but this is primarily used to defrost frozen samples, and manual clotting tests are only used to teach visiting medical students. We have migrated across several methodologies in the 45-year history of the local laboratory. Laurel gel rockets, used for several assays in the 1980s, were replaced with enzyme-linked immunosorbent assay assays and most assays were eventually placed on automated instruments. Radio-isotopic assays, used in the 1980s, were replaced by an alternate safer method or else abandoned. Test numbers have increased markedly over time. The approximately 31,000 hemostasis assays performed at the Westmead-based laboratory in 1983 had become approximately 200,000 in 2022, a sixfold increase. Some 90,000 prothrombin times and activated partial thromboplastic times are now performed at this laboratory per year. Thrombophilia assays were added to the test repertoires over time, as were the tests to measure several anticoagulant drugs, most recently the direct oral anticoagulants. I hope my personal history, reflecting on the changes in hemostasis testing over my career to date in the field, is found to be of interest to the readership, and I hope they forgive any inaccuracies I have introduced in this reflection of the past.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, NSW Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
5
|
Bissola AL, Daka M, Ivetic N, Clare R, Pai M, Kelton JG, Arnold DM, Nazy I. Evaluation of laboratory testing parameters for vaccine-induced immune thrombotic thrombocytopenia and their implications for diagnosis. J Thromb Haemost 2024; 22:304-306. [PMID: 37866513 DOI: 10.1016/j.jtha.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Affiliation(s)
- Anna-Lise Bissola
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mercy Daka
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nikola Ivetic
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Menaka Pai
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John G Kelton
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Guinn N, Tanaka K, Erdoes G, Kwak J, Henderson R, Mazzeffi M, Fabbro M, Raphael J. The Year in Coagulation and Transfusion: Selected Highlights from 2022. J Cardiothorac Vasc Anesth 2023; 37:2435-2449. [PMID: 37690951 DOI: 10.1053/j.jvca.2023.08.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
This is an annual review to cover highlights in transfusion and coagulation in patients undergoing cardiovascular surgery. The goal of this article is to provide readers with a focused summary of the most important transfusion and coagulation topics published in 2022. This includes a discussion covering the management of anemia and red blood cell transfusion, the management of factor Xa inhibitors, updates in coagulation testing, updates in the use of factor concentrates, advances in platelet therapy, advances in anticoagulation management of patients on extracorporeal membrane oxygenation and other forms of mechanical circulatory support, and advances in the diagnosis and management of heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Nicole Guinn
- Chief of Neuroanesthesiology, Otolaryngology and Offsite Anesthesia Division, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gabor Erdoes
- Department of Anesthesiology and Pain Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Jenny Kwak
- Division of Cardiac Anesthesia, Department of Anesthesiology and Perioperative Medicine, Loyola University Medical Center, Maywood, IL
| | - Reney Henderson
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia, University of Maryland School of Medicine, Baltimore, MD
| | - Michael Mazzeffi
- Department of Anesthesiology, University of Virginia Medical Center, Charlottesville, VA
| | - Michael Fabbro
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami, Miami, FL
| | - Jacob Raphael
- Department of Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA.
| |
Collapse
|
7
|
Favaloro EJ, Pasalic L, Lippi G. Editorial Compilation-XIII. Semin Thromb Hemost 2023; 49:427-432. [PMID: 36781152 DOI: 10.1055/s-0043-1762576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Leonardo Pasalic
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, Australia
- Westmead Clinical School, University of Sydney, Westmead, NSW Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Favaloro EJ, Lay M, Mohammed S, Vong R, Pasalic L. Pathology utilisation during COVID-19 outbreaks beyond viral testing: routine coagulation and D-dimer testing. Pathology 2023; 55:155-159. [PMID: 35637015 PMCID: PMC9142185 DOI: 10.1016/j.pathol.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia; Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | - Michelle Lay
- Clinical Operations, NSW Health Pathology, St Leonards, NSW, Australia
| | - Soma Mohammed
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Ronny Vong
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Leonardo Pasalic
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia; Sydney University, Westmead, NSW, Australia
| |
Collapse
|
9
|
Favaloro EJ, Pasalic L. Heparin-Induced Thrombotic Thrombocytopenia (HITT) and Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): Similar but Different. Methods Mol Biol 2023; 2663:405-415. [PMID: 37204726 DOI: 10.1007/978-1-0716-3175-1_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) represents an autoimmune process whereby antibodies are formed against heparin in complex with platelet factor 4 (PF4) after heparin administration. These antibodies can be detected by a variety of immunological assays, including ELISA (enzyme-linked immunosorbent assay) and by chemiluminescence on the AcuStar instrument. However, pathological HIT antibodies are those that activate platelets in a platelet activation assay and cause thrombosis in vivo. We would tend to call this condition heparin-induced thrombotic thrombocytopenia (HITT), although some workers instead use the truncated abbreviation HIT. Vaccine-induced (immune) thrombotic thrombocytopenia (VITT) instead reflects an autoimmune process whereby antibodies are formed against PF4 after administration of a vaccine, most notably adenovirus-based vaccines directed against COVID-19 (coronavirus disease 2019). Although both VITT and HITT reflect similar pathological processes, they have different origins and are detected in different ways. Most notable is that anti-PF4 antibodies in VITT can only be detected immunologically by ELISA assays, tending to be negative in rapid assays such as that using the AcuStar. Moreover, functional platelet activation assays otherwise used for HITT may need to be modified to detect platelet activation in VITT.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- School of Medical Sciences, Faculty of Medicine and Health University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, Wagga, NSW, Australia.
| | - Leonardo Pasalic
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
10
|
Favaloro EJ, Gosselin RC, Pasalic L, Lippi G. Hemostasis and Thrombosis: An Overview Focusing on Associated Laboratory Testing to Diagnose and Help Manage Related Disorders. Methods Mol Biol 2023; 2663:3-38. [PMID: 37204701 DOI: 10.1007/978-1-0716-3175-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hemostasis is a complex but balanced process that permit normal blood flow, without adverse events. Disruption of the balance may lead to bleeding or thrombotic events, and clinical interventions may be required. Hemostasis laboratories typically offer an array of tests, including routine coagulation and specialized hemostasis assays used to guide clinicians for diagnosing and managing patients. Routine assays may be used to screen patients for hemostasis-related disturbances but may also be used for drug monitoring, measuring efficacy of replacement or adjunctive therapy, and other indications, which may then be used to guide further patient management. Similarly, "specialized" assays are used for diagnostic purposes or may be used to monitor or measure efficacy of a given therapy. This chapter provides an overview of hemostasis and thrombosis, with a focus on laboratory testing that may be used to diagnose and help manage patients suspected of hemostasis- and thrombosis-related disorders.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- School of Medical Sciences, Faculty of Medicine and Health University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, Wagga, NSW, Australia.
| | - Robert C Gosselin
- Hemostasis & Thrombosis Center, Davis Health System, University of California, Sacramento, CA, USA
| | - Leonardo Pasalic
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Favaloro EJ, Clifford J, Leitinger E, Parker M, Sung P, Chunilal S, Tran H, Kershaw G, Fu S, Passam F, Ahuja M, Ho SJ, Duncan E, Yacoub O, Tan CW, Kaminskis L, Modica N, Pepperell D, Ballard L, Clarke L, Lee CSM, Gardiner EE, Young-Ill Choi P, Tohidi-Esfahani I, Bird R, Brighton T, Chen VM. Assessment of immunological anti-platelet factor 4 antibodies for vaccine-induced thrombotic thrombocytopenia (VITT) in a large Australian cohort: A multicenter study comprising 1284 patients. J Thromb Haemost 2022; 20:2896-2908. [PMID: 36107495 PMCID: PMC9828670 DOI: 10.1111/jth.15881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare complication of adenovirus-based vaccines aimed to prevent and minimize COVID-19 and related pathophysiology. OBJECTIVES To describe patterns of testing for anti-platelet factor 4 (PF4) antibodies using various ELISA assays in a large Australian cohort and comparative functional platelet activation assays in a subset. PATIENTS/METHODS Asserachrom HPIA IgG ELISA was performed in 1284 patients over a period of 12 months, supplemented in select cohorts by comparative ELISA using three other methods (n = 78-179), three different functional assays (flow cytometry, serotonin release assay, and/or Multiplate; n = 476), and rapid immunological chemiluminescence anti-PF4 assay (n = 460), in a multicenter study. RESULTS For first episode presentations, 190/1284 (14.8%) ELISA tests were positive. Conversely, most (445/460; 96.7%) chemiluminescence anti-PF4 test results were negative. All functional assays showed associations of higher median ELISA optical density with functional positivity and with high rates of ELISA positivity (64.0% to 85.2%). Data also identified functional positivity in 14.8%-36.0% of ELISA negative samples, suggesting false negative VITT by HPIA IgG ELISA in upward of one third of assessable cases. CONCLUSION To our knowledge, this is the largest multicenter evaluation of anti-PF4 testing for investigation of VITT. Discrepancies in test results (ELISA vs. ELISA or ELISA vs. functional assay) in some patients highlighted limitations in relying on single methods (ELISA and functional) for PF4 antibody detection in VITT, and also highlights the variability in phenotypic test presentation and pathomechanism of VITT.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - Emma Leitinger
- Haematology, Monash Health, Melbourne, Victoria, Australia
| | - Michael Parker
- Haematology, Monash Health, Melbourne, Victoria, Australia
| | - Pauline Sung
- Haematology, Monash Health, Melbourne, Victoria, Australia
| | | | - Huyen Tran
- Clinical Haematology Department, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Geoffrey Kershaw
- Haematology, NSW Health Pathology, Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Suki Fu
- Haematology, NSW Health Pathology, Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Freda Passam
- Haematology, NSW Health Pathology, Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Monica Ahuja
- Haematology, NSW Health Pathology, St George Hospital, Kogarah, New South Wales, Australia
| | - Shir Jing Ho
- Haematology, NSW Health Pathology, St George Hospital, Kogarah, New South Wales, Australia
| | - Elizabeth Duncan
- Haematology, SA Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Olivia Yacoub
- Haematology, SA Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Chee Wee Tan
- Haematology, SA Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa Kaminskis
- Haematology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Natasha Modica
- Haematology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Dominic Pepperell
- Haematology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Leanne Ballard
- Haematology, Qld Pathology, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Lisa Clarke
- Haematology, NSW Health Pathology, Concord Hospital, Concord, New South Wales, Australia
- Australian Red Cross Lifeblood, Sydney, New South Wales, Australia
| | - Christine S M Lee
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Division of Genome Sciences and Cancer, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Philip Young-Ill Choi
- John Curtin School of Medical Research, Division of Genome Sciences and Cancer, The Australian National University, Canberra, Australian Capital Territory, Australia
- Haematology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - Robert Bird
- Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Timothy Brighton
- Haematology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Vivien M Chen
- Haematology, NSW Health Pathology, Concord Hospital, Concord, New South Wales, Australia
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| |
Collapse
|
12
|
Favaloro EJ, Pasalic L, Lippi G. Autoimmune Diseases Affecting Hemostasis: A Narrative Review. Int J Mol Sci 2022; 23:ijms232314715. [PMID: 36499042 PMCID: PMC9738541 DOI: 10.3390/ijms232314715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
Hemostasis reflects a homeostatic mechanism that aims to balance out pro-coagulant and anti-coagulant forces to maintain blood flow within the circulation. Simplistically, a relative excess of procoagulant forces can lead to thrombosis, and a relative excess of anticoagulant forces can lead to bleeding. There are a wide variety of congenital disorders associated with bleeding or thrombosis. In addition, there exist a vast array of autoimmune diseases that can also lead to either bleeding or thrombosis. For example, autoantibodies generated against clotting factors can lead to bleeding, of which acquired hemophilia A is the most common. As another example, autoimmune-mediated antibodies against phospholipids can generate a prothrombotic milieu in a condition known as antiphospholipid (antibody) syndrome (APS). Moreover, there exist various autoimmunity promoting environments that can lead to a variety of antibodies that affect hemostasis. Coronavirus disease 2019 (COVID-19) represents perhaps the contemporary example of such a state, with potential development of a kaleidoscope of such antibodies that primarily drive thrombosis, but may also lead to bleeding on rarer occasions. We provide here a narrative review to discuss the interaction between various autoimmune diseases and hemostasis.
Collapse
Affiliation(s)
- Emmanuel J. Favaloro
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Correspondence: ; Tel.: +61-2-8890-6618
| | - Leonardo Pasalic
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Westmead, Sydney, NSW 2006, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| |
Collapse
|
13
|
Wang Y, Rao Q, Li X. Adverse transfusion reactions and what we can do. Expert Rev Hematol 2022; 15:711-726. [PMID: 35950450 DOI: 10.1080/17474086.2022.2112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transfusions of blood and blood components have inherent risks and the ensuing adverse reactions. It is very important to understand the adverse reactions of blood transfusion comprehensively for ensuring the safety of any future transfusions. AREAS COVERED According to the time of onset, adverse reactions of blood transfusion are divided into immediate and delayed transfusion reactions. In acute transfusion reactions, timely identification and immediate cessation of transfusion is critical. Vigilance is required to distinguish delayed responses or reactions that present nonspecific signs and symptoms. In this review, we present the progress of mechanism, clinical characteristics and management of commonly encountered transfusion reactions. EXPERT OPINION The incidence of many transfusion-related adverse events is decreasing, but threats to transfusion safety are always emerging. It is particularly important for clinicians and blood transfusion staff to recognize the causes, symptoms, and treatment methods of adverse blood transfusion reactions to improve the safety. In the future, at-risk patients will be better identified and can benefit from more closely matched blood components.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
The clinical and laboratory diagnosis of vaccine-induced immune thrombotic thrombocytopenia. Blood Adv 2022; 6:4228-4235. [PMID: 35609563 PMCID: PMC9132380 DOI: 10.1182/bloodadvances.2022007766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but serious adverse syndrome occurring 5-30 days after adenoviral vector COVID-19 vaccination. Therefore, a practical evaluation of clinical assessments and laboratory testing for VITT is needed to prevent significant adverse outcomes as the global use of adenoviral vector vaccines continues. We received the clinical information and blood samples of 156 patient samples with a suspected diagnosis of VITT between April to July 2021 in Canada. The performance characteristics of various diagnostic laboratory tests were evaluated against the PF4-SRA including a commercial anti-PF4/heparin IgG/A/M enzyme immunoassay (EIA, PF4 Enhanced; Immucor), in-house IgG-specific anti-PF4 and anti-PF4/heparin-EIAs, the standard SRA, and the PF4/heparin-SRA. Of those, 43 (27.6%) had serologically confirmed VITT based on a positive PF4-SRA result and 113 (72.4%) were negative. The commercial anti-PF4/heparin EIA, the in-house anti-PF4-EIA, and anti-PF4/heparin-EIA were positive for all 43 VITT-confirmed samples (100% sensitivity) with a few false-positive results (mean specificity 95.6%). These immunoassays had specificities of 95.6% [95% confidence interval (CI) 90.0-98.6], 96.5% (95% CI 91.2-99.0), and 97.4% (95% CI 92.4-99.5), respectively. Functional tests, including the standard SRA and PF4/heparin-SRA, had high specificities (100%), but poor sensitivities for VITT [16.7% (95% CI 7.0-31.4); and 46.2% (95% CI 26.6-66.6), respectively]. These findings suggest EIA assays that can directly detect antibodies to PF4 or PF4/heparin have excellent performance characteristics and may be useful as a diagnostic test if the PF4-SRA is unavailable.
Collapse
|