1
|
Angius F, Puxeddu S, Zaimi S, Canton S, Nematollahzadeh S, Pibiri A, Delogu I, Alvisi G, Moi ML, Manzin A. SARS-CoV-2 Evolution: Implications for Diagnosis, Treatment, Vaccine Effectiveness and Development. Vaccines (Basel) 2024; 13:17. [PMID: 39852796 PMCID: PMC11769326 DOI: 10.3390/vaccines13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, presents ongoing challenges to global public health. SARS-CoV-2 is characterized by rapidly evolving mutations, especially in (but not limited to) the spike protein, complicating predictions about its evolutionary trajectory. These mutations have significantly affected transmissibility, immune evasion, and vaccine efficacy, leading to multiple pandemic waves with over half a billion cases and seven million deaths globally. Despite several strategies, from rapid vaccine development and administration to the design and availability of antivirals, including monoclonal antibodies, already having been employed, the persistent circulation of the virus and the emergence of new variants continue to result in high case numbers and fatalities. In the past four years, immense research efforts have contributed much to our understanding of the viral pathogenesis mechanism, the COVID-19 syndrome, and the host-microbe interactions, leading to the development of effective vaccines, diagnostic tools, and treatments. The focus of this review is to provide a comprehensive analysis of the functional impact of mutations on diagnosis, treatments, and vaccine effectiveness. We further discuss vaccine safety in pregnancy and the implications of hybrid immunity on long-term protection against infection, as well as the latest developments on a pan-coronavirus vaccine and nasal formulations, emphasizing the need for continued surveillance, research, and adaptive public health strategies in response to the ongoing SARS-CoV-2 evolution race.
Collapse
Affiliation(s)
- Fabrizio Angius
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Silvia Puxeddu
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Silvio Zaimi
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Serena Canton
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Sepehr Nematollahzadeh
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (S.N.); (G.A.)
| | - Andrea Pibiri
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Ilenia Delogu
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (S.N.); (G.A.)
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| |
Collapse
|
2
|
Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, Miotto O, Öncel MM, Khan AM. DiMA: sequence diversity dynamics analyser for viruses. Brief Bioinform 2024; 26:bbae607. [PMID: 39592151 PMCID: PMC11596295 DOI: 10.1093/bib/bbae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
Collapse
Affiliation(s)
- Shan Tharanga
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Eyyüb Selim Ünlü
- Istanbul Faculty of Medicine, Istanbul University, Turgut Özal Millet St, Topkapi, Istanbul 34093, Türkiye
- Genome Surveillance Unit, Wellcome Sanger Institute, Mill Ln, Hinxton, Saffron Walden CB10 1SA, United Kingdom
| | - Yongli Hu
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Muhammad Farhan Sjaugi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Muhammet A Çelik
- Celik Sarayı, Yeni Elektrik Santral St. No:29/2, Meram, Konya 42090, Türkiye
| | - Hilal Hekimoğlu
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Olivo Miotto
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Muhammed Miran Öncel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Jelaiah Street, Duhail North, Doha, Qatar
| |
Collapse
|
3
|
Lau KA, Foster CSP, Theis T, Draper J, Sullivan MJ, Ballard S, Rawlinson WD. Continued improvement in the development of the SARS-CoV-2 whole genome sequencing proficiency testing program. Pathology 2024; 56:717-725. [PMID: 38729860 DOI: 10.1016/j.pathol.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Application of whole genome sequencing (WGS) has allowed monitoring of the emergence of variants of concern (VOC) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) globally. Genomic investigation of emerging variants and surveillance of clinical progress has reduced the public health impact of infection during the COVID-19 pandemic. These steps required developing and implementing a proficiency testing program (PTP), as WGS has been incorporated into routine reference laboratory practice. In this study, we describe how the PTP evaluated the capacity and capability of one New Zealand and 14 Australian public health laboratories to perform WGS of SARS-CoV-2 in 2022. The participants' performances in characterising a specimen panel of known SARS-CoV-2 isolates in the PTP were assessed based on: (1) genome coverage, (2) Pango lineage, and (3) sequence quality, with the choice of assessment metrics refined based on a previously reported assessment conducted in 2021. The participants' performances in 2021 and 2022 were also compared after reassessing the 2021 results using the more stringent metrics adopted in 2022. We found that more participants would have failed the 2021 assessment for all survey samples and a significantly higher fail rate per sample in 2021 compared to 2022. This study highlights the importance of choosing appropriate performance metrics to reflect better the laboratories' capacity to perform SARS-CoV-2 WGS, as was done in the 2022 PTP. It also displays the need for a PTP for WGS of SARS-CoV-2 to be available to public health laboratories ongoing, with continuous refinements in the design and provision of the PTP to account for the dynamic nature of the COVID-19 pandemic as SARS-CoV-2 continues to evolve.
Collapse
Affiliation(s)
| | - Charles S P Foster
- University of NSW (UNSW) School of Biomedical Sciences, Sydney, NSW, Australia; Serology and Virology Division (SAViD) Department of Microbiology, NSW Health Pathology, SOMS, BABS, Women's and Children's, University of New South Wales, Sydney, NSW, Australia
| | | | - Jenny Draper
- Institute for Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia
| | - Mitchell J Sullivan
- Queensland Public Health and Infectious Diseases Reference Genomics, Public and Environmental Health, Forensic and Scientific Services, Queensland Health, Brisbane, Qld, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | - William D Rawlinson
- University of NSW (UNSW) School of Biomedical Sciences, Sydney, NSW, Australia; Serology and Virology Division (SAViD) Department of Microbiology, NSW Health Pathology, SOMS, BABS, Women's and Children's, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Camp JV, Puchhammer-Stöckl E, Aberle SW, Buchta C. Virus sequencing performance during the SARS-CoV-2 pandemic: a retrospective analysis of data from multiple rounds of external quality assessment in Austria. Front Mol Biosci 2024; 11:1327699. [PMID: 38375507 PMCID: PMC10875003 DOI: 10.3389/fmolb.2024.1327699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction: A notable feature of the 2019 coronavirus disease (COVID-19) pandemic was the widespread use of whole genome sequencing (WGS) to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Countries around the world relied on sequencing and other forms of variant detection to perform contact tracing and monitor changes in the virus genome, in the hopes that epidemic waves caused by variants would be detected and managed earlier. As sequencing was encouraged and rewarded by the government in Austria, but represented a new technicque for many laboratories, we designed an external quality assessment (EQA) scheme to monitor the accuracy of WGS and assist laboratories in validating their methods. Methods: We implemented SARS-CoV-2 WGS EQAs in Austria and report the results from 7 participants over 5 rounds from February 2021 until June 2023. The participants received sample material, sequenced genomes with routine methods, and provided the sequences as well as information about mutations and lineages. Participants were evaluated on the completeness and accuracy of the submitted sequence and the ability to analyze and interpret sequencing data. Results: The results indicate that performance was excellent with few exceptions, and these exceptions showed improvement over time. We extend our findings to infer that most publicly available sequences are accurate within ≤1 nucleotide, somewhat randomly distributed through the genome. Conclusion: WGS continues to be used for SARS-CoV-2 surveillance, and will likely be instrumental in future outbreak scenarios. We identified hurdles in building next-generation sequencing capacity in diagnostic laboratories. EQAs will help individual laboratories maintain high quality next-generation sequencing output, and strengthen variant monitoring and molecular epidemiology efforts.
Collapse
Affiliation(s)
- Jeremy V Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Christoph Buchta
- Austrian Association for Quality Assurance and Standardization of Medical and Diagnostic Tests (ÖQUASTA), Vienna, Austria
| |
Collapse
|
5
|
Zufan SE, Lau KA, Donald A, Hoang T, Foster CSP, Sikazwe C, Theis T, Rawlinson WD, Ballard SA, Stinear TP, Howden BP, Jennison AV, Seemann T. Bioinformatic investigation of discordant sequence data for SARS-CoV-2: insights for robust genomic analysis during pandemic surveillance. Microb Genom 2023; 9. [PMID: 38019123 DOI: 10.1099/mgen.0.001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
The COVID-19 pandemic has necessitated the rapid development and implementation of whole-genome sequencing (WGS) and bioinformatic methods for managing the pandemic. However, variability in methods and capabilities between laboratories has posed challenges in ensuring data accuracy. A national working group comprising 18 laboratory scientists and bioinformaticians from Australia and New Zealand was formed to improve data concordance across public health laboratories (PHLs). One effort, presented in this study, sought to understand the impact of the methodology on consensus genome concordance and interpretation. SARS-CoV-2 WGS proficiency testing programme (PTP) data were retrospectively obtained from the 2021 Royal College of Pathologists of Australasia Quality Assurance Programmes (RCPAQAP), which included 11 participating Australian laboratories. The submitted consensus genomes and reads from eight contrived specimens were investigated, focusing on discordant sequence data and findings were presented to the working group to inform best practices. Despite using a variety of laboratory and bioinformatic methods for SARS-CoV-2 WGS, participants largely produced concordant genomes. Two participants returned five discordant sites in a high-Cτ replicate, which could be resolved with reasonable bioinformatic quality thresholds. We noted ten discrepancies in genome assessment that arose from nucleotide heterogeneity at three different sites in three cell-culture-derived control specimens. While these sites were ultimately accurate after considering the participants' bioinformatic parameters, it presented an interesting challenge for developing standards to account for intrahost single nucleotide variation (iSNV). Observed differences had little to no impact on key surveillance metrics, lineage assignment and phylogenetic clustering, while genome coverage <90 % affected both. We recommend PHLs bioinformatically generate two consensus genomes with and without ambiguity thresholds for quality control and downstream analysis, respectively, and adhere to a minimum 90 % genome coverage threshold for inclusion in surveillance interpretations. We also suggest additional PTP assessment criteria, including primer efficiency, detection of iSNVs and minimum genome coverage of 90 %. This study underscores the importance of multidisciplinary national working groups in informing guidelines in real time for bioinformatic quality acceptance criteria. It demonstrates the potential for enhancing public health responses through improved data concordance and quality control in SARS-CoV-2 genomic analysis during pandemic surveillance.
Collapse
Affiliation(s)
- Sara E Zufan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Angela Donald
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tuyet Hoang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD) SEALS Microbiology, NSW Health Pathology, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chisha Sikazwe
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - William D Rawlinson
- RCPAQAP Biosecurity, St. Leonards, NSW, Australia
- Serology and Virology Division (SAViD) SEALS Microbiology, NSW Health Pathology, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Women's and Children's Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|