1
|
Kostoulias X, Fu Y, Morris FC, Yu C, Qu Y, Chang CC, Blakeway L, Landersdorfer CB, Abbott IJ, Wang L, Wisniewski J, Yu Y, Li J, Peleg AY. Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa biofilms under static and dynamic conditions. J Antimicrob Chemother 2025; 80:372-380. [PMID: 39657684 PMCID: PMC11787898 DOI: 10.1093/jac/dkae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa biofilms limit the efficacy of currently available antibacterial therapies and pose significant clinical challenges. Pseudomonal biofilms are complicated further when other markers of persistence such as mucoid and hypermutable phenotypes are present. There is currently a paucity of data regarding the activity of the newer β-lactam/β-lactamase inhibitor combination ceftolozane/tazobactam against P. aeruginosa biofilms. METHODS We evaluated the efficacy of ceftolozane/tazobactam against clinical P. aeruginosa isolates, the laboratory isolate PAO1 and its isogenic mutS-deficient hypermutator derivative (PAOMS) grown under static and dynamic biofilm conditions. The clinical isolate collection included strains with mucoid and hypermutable phenotypes. RESULTS Ceftolozane/tazobactam exposure led to a bactericidal (≥3 log cfu/cm2) biofilm reduction in 15/18 (83%) clinical isolates grown under static conditions, irrespective of carbapenem susceptibility or mucoid phenotype, with greater activity compared with colistin (P < 0.05). Dynamically grown biofilms were less susceptible to ceftolozane/tazobactam with active biofilm reduction (≥1 log cfu/cm2) observed in 2/3 isolates. Hypermutability did not affect the antibiofilm efficacy of ceftolozane/tazobactam in either static or dynamic conditions when comparing PAO1 and PAOMS. Consistent with the activity of ceftolozane/tazobactam as a potent inhibitor of PBP3, dramatic impacts on P. aeruginosa morphology were observed. CONCLUSIONS Our data demonstrate that ceftolozane/tazobactam has encouraging properties in the treatment of P. aeruginosa biofilm infections, and its activity is not diminished against mucoid or hypermutable variants at the timepoints examined.
Collapse
Affiliation(s)
- Xenia Kostoulias
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Ying Fu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Faye C Morris
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Crystal Yu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yue Qu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Christina C Chang
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Cornelia B Landersdorfer
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Iain J Abbott
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Microbiology Unit, The Alfred Hospital, Prahran, Melbourne, VIC 3004, Australia
| | - Lynn Wang
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yunsong Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Li
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anton Y Peleg
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Freire MP, Pouch S, Manesh A, Giannella M. Burden and Management of Multi-Drug Resistant Organism Infections in Solid Organ Transplant Recipients Across the World: A Narrative Review. Transpl Int 2024; 37:12469. [PMID: 38952482 PMCID: PMC11215024 DOI: 10.3389/ti.2024.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/07/2024] [Indexed: 07/03/2024]
Abstract
Solid organ transplant (SOT) recipients are particularly susceptible to infections caused by multidrug-resistant organisms (MDRO) and are often the first to be affected by an emerging resistant pathogen. Unfortunately, their prevalence and impact on morbidity and mortality according to the type of graft is not systematically reported from high-as well as from low and middle-income countries (HIC and LMIC). Thus, epidemiology on MDRO in SOT recipients could be subjected to reporting bias. In addition, screening practices and diagnostic resources may vary between countries, as well as the availability of new drugs. In this review, we aimed to depict the burden of main Gram-negative MDRO in SOT patients across HIC and LMIC and to provide an overview of current diagnostic and therapeutic resources.
Collapse
Affiliation(s)
- Maristela Pinheiro Freire
- Department of Infectious Diseases, Hospital das Clínicas, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Stephanie Pouch
- Transplant Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Simão FA, Almeida MM, Rosa HS, Marques EA, Leão RS. Genetic determinants of antimicrobial resistance in polymyxin B resistant Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis. Braz J Microbiol 2024; 55:1415-1425. [PMID: 38619733 PMCID: PMC11153443 DOI: 10.1007/s42770-024-01311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is the main pathogen associated with pulmonary exacerbation in patients with cystic fibrosis (CF). CF is a multisystemic genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, which mainly affects pulmonary function. P. aeruginosa isolated from individuals with CF in Brazil is not commonly associated with multidrug resistance (MDR), especially when compared to global occurrence, where the presence of epidemic clones, capable of expressing resistance to several drugs, is often reported. Due to the recent observations of MDR isolates of P. aeruginosa in our centers, combined with these characteristics, whole-genome sequencing was employed for analyses related to antimicrobial resistance, plasmid identification, search for phages, and characterization of CF clones. All isolates in this study were polymyxin B resistant, exhibiting diverse mutations and reduced susceptibility to carbapenems. Alterations in mexZ can result in the overexpression of the MexXY efflux pump. Mutations in oprD, pmrB, parS, gyrA and parC may confer reduced susceptibility to antimicrobials by affecting permeability, as observed in phenotypic tests. The phage findings led to the assumption of horizontal genetic transfer, implicating dissemination between P. aeruginosa isolates. New sequence types were described, and none of the isolates showed an association with epidemic CF clones. Analysis of the genetic context of P. aeruginosa resistance to polymyxin B allowed us to understand the different mechanisms of resistance to antimicrobials, in addition to subsidizing the understanding of possible relationships with epidemic strains that circulate among individuals with CF observed in other countries.
Collapse
Affiliation(s)
- Felipe A Simão
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mila M Almeida
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heloísa S Rosa
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson S Leão
- Laboratório de Microbiologia da Fibrose Cística, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|