1
|
Riaz N, Huibers A, Leong SP, Kashani-Sabet M, White RL, Vetto JT, Schneebaum S, O'Donoghue C, Howard H, Avisar E, Namm JP, Kosiorek H, Pockaj B, Faries M, Karakousis G, Zager JS, Olofsson Bagge R. Prognostic Value of Nevus-Associated Melanoma in Patients with Melanoma. Ann Surg Oncol 2025; 32:3189-3197. [PMID: 39893342 PMCID: PMC11976787 DOI: 10.1245/s10434-025-16945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Although most melanomas develop de novo, about 30% are nevus-associated melanomas, where the prognostic value is unclear. Our study aimed to determine whether nevus-associated melanoma is associated with sentinel lymph node (SLN) status and prognosis in patients with melanoma. METHODS The Sentinel Lymph Node Working Group database, which includes comprehensive clinicopathological and outcome data, was utilized to investigate the association of nevus-associated melanoma with SLN status as well as relapse-free (RFS), melanoma-specific (MSS), and overall survival (OS) using multivariable logistic regression and Cox regression modeling. RESULTS A total of 3447 adult patients with a median follow-up of 2.6 years (interquartile range 0.9-6.9) were evaluable. Compared with de novo melanomas, nevus-associated melanomas showed a significant correlation with younger age as well as favorable histological features. The presence of a nevus-associated melanoma was not identified as an independent factor for SLN status (odds ratio 1.06, 95% confidence interval [CI] 0.80-1.41; p = 0.68). Compared with de novo melanomas, nevus-associated melanomas provided independent prognostic information for a favorable RFS (hazard ratio [HR] 0.67, 95% CI 0.53-0.84; p < 0.001), MSS (HR 0.54, 95% CI 0.34-0.85; p = 0.008), and OS (HR 0.42, 95% CI 0.30-0.57; p < 0.001). CONCLUSION Melanomas associated with pre-existing nevi appear to be an independent favorable prognostic factor for recurrence and survival and may potentially be used as a clinical parameter for identifying patients with lower risk of recurrence.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anne Huibers
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA, USA
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA, USA
| | - Richard L White
- Department of Surgery, Atrium Health Levine Cancer Center, Charlotte, NC, USA
| | - John T Vetto
- Department of Surgery and Division of Surgical Oncology, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Harrison Howard
- Department of Surgery, University of South Alabama, Mobile, AL, USA
| | - Eli Avisar
- Department of Surgical Oncology, University of Miami School of Medicine, Miami, FL, USA
| | - Jukes P Namm
- Department of Surgery, Loma Linda University, Loma Linda, CA, USA
| | - Heidi Kosiorek
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Barbara Pockaj
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic - Arizona, Phoenix, AZ, USA
| | - Mark Faries
- Department of Surgery, Angeles Clinic and Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giorgos Karakousis
- Division of Endocrine and Oncologic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jonathan S Zager
- Departments of Cutaneous Oncology and Sarcoma, Moffit Cancer Center, Tampa, FL, USA
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Liang Y, Maeda O, Nishida K, Chretien B, Ando Y. Genomic profiles of patients with skin melanoma in the era of immune checkpoint inhibitors. Cancer Sci 2025; 116:1107-1114. [PMID: 39888082 PMCID: PMC11967263 DOI: 10.1111/cas.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 02/01/2025] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) for treating melanoma has dramatically improved patient prognosis. The genomic profiles of patients receiving ICI therapy would provide valuable information for disease management and treatment. We investigated the genomic profiles of patients with melanoma who had received ICI therapy and explored associations with clinical features and outcomes via a large-scale nationwide database in Japan (the C-CAT database). We identified 339 patients eligible for this study. The most frequent genetic mutations were found in the BRAF (27%), TERT (24%), and NRAS (19%) genes, and the most common copy number variations (CNVs) were in the CDKN2A (36%), CDKN2B (26%), and MTAP (19%) genes. Associations with high tumor mutational burden (TMB-high) status were significant for TERT (p < 0.001), NF1 (p < 0.001), ROS1 (p = 0.015), POLE (p = 0.045), and POLD1 (p = 0.008) mutations, along with older age (≥65 years, p = 0.036). Patients with multiple metastases (two or more) were more likely to have NOTCH3 mutations (p = 0.017) and be younger than 65 years (p = 0.024). In particular, as well as younger age, patients with brain metastases were more likely to harbor BRAF mutations (p < 0.001), while those with liver metastases were more likely to harbor NOTCH3 mutations (p < 0.001) but not CDKN2B CNVs (p = 0.041). Patients with NRAS mutations were less likely to respond to ICI therapy (p = 0.014) and exhibited shorter overall survival (p = 0.006). In this population, the frequency of BRAF mutations was lower than that in fair-skinned populations, but the associations between genomic profiles, clinical features, and outcomes were similar to those previously reported in fair-skinned populations.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Osamu Maeda
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Kazuki Nishida
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Basile Chretien
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Yuichi Ando
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| |
Collapse
|
3
|
Pazhava A, Kim YH, Jing FZ, Pittelkow MR. 31-GEP (DecisionDx): a review of clinical utility and performance in a Mayo Clinic cohort. Int J Dermatol 2025; 64:563-570. [PMID: 39154363 DOI: 10.1111/ijd.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is a significant health concern because of its high metastatic potential. Gene Expression Profile (GEP) testing, particularly the 31-GEP test (DecisionDx-Melanoma), has been increasingly used for risk stratification in CM patients. This study aimed to evaluate the clinical utility and performance of the 31-GEP test in a real-world setting. METHODS Patients with CM who underwent 31-GEP testing from August 2014 to August 2022 at our institution were identified through searches of electronic health records. The study analyzed the influence of 31-GEP testing on clinical decision-making related to sentinel lymph node biopsy (SLNB), medical oncology referral, and postdiagnosis surveillance. Kaplan-Meier curves and Cox proportional hazard models were used to elucidate the test's performance, focusing on relapse-free survival (RFS) and melanoma-specific survival (MSS). RESULTS The study included 65 CM patients. Dermatologists ordered more than 80% of 31-GEP tests. In 81.5% of cases, 31-GEP results did not alter standard clinical management. SLNB decisions were unaffected in 92% of patients with pre-SLNB 31-GEP results. Among patients with stage I-IIA melanoma, 25% of those with high-risk 31-GEP results were referred to medical oncology. Contrary to expectations, the rate of nodal metastasis was higher in low-risk than in high-risk 31-GEP cases. Survival analysis showed overlapping RFS and MSS curves between different 31-GEP classes, suggesting limited prognostic value. CONCLUSIONS The 31-GEP test has a limited impact on clinical management decisions and shows limited prognostic value.
Collapse
Affiliation(s)
- Ani Pazhava
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Yong-Hun Kim
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Frank Z Jing
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
4
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Brochez L, Del Marmol V, Dréno B, Eggermont AMM, Fargnoli MC, Forsea AM, Höller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Leiter U, Longo C, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stockfleth E, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P, Mandala M. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2024. Eur J Cancer 2025; 215:115152. [PMID: 39700658 DOI: 10.1016/j.ejca.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
This guideline was developed in close collaboration with multidisciplinary experts from the European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF) and the European Organization for Research and Treatment of Cancer (EORTC). Recommendations for the diagnosis and treatment of melanoma were developed on the basis of systematic literature research and consensus conferences. Cutaneous melanoma (CM) is the most dangerous form of skin tumor and accounts for 90 % of skin cancer mortality. The diagnosis of melanoma can be made clinically and must always be confirmed by dermoscopy. If melanoma is suspected, a histopathological examination is always required. Sequential digital dermoscopy and whole-body photography can be used in high-risk patients to improve the detection of early-stage melanoma. If available, confocal reflectance microscopy can also improve the clinical diagnosis in special cases. Melanoma is classified according to the 8th version of the American Joint Committee on Cancer classification. For thin melanomas up to a tumor thickness of 0.8 mm, no further diagnostic imaging is required. From stage IB, lymph node sonography is recommended, but no further imaging examinations. From stage IIB/C, whole-body examinations with computed tomography or positron emission tomography CT in combination with magnetic resonance imaging of the brain are recommended. From stage IIB/C and higher, a mutation test is recommended, especially for the BRAF V600 mutation. It is important to perform a structured follow-up to detect relapses and secondary primary melanomas as early as possible. A stage-based follow-up regimen is proposed, which in the experience of the guideline group covers the optimal requirements, although further studies may be considered. This guideline is valid until the end of 2026.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, and Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London SE1 7EH, UK
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Alexander M M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximilians University, Munich, Germany
| | | | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | - Nicole Kelleners-Smeets
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, and Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Skin Cancer Centre, Reggio Emilia, Italy
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic, IDIBAPS, Barcelona, Spain; University of Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service. Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Paul Nathan
- Mount Vernon Cancer Centre, Northwood United Kingdom
| | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander J Stratigos
- 1st Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mario Mandala
- University of Perugia, Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
5
|
Prieto PA, Goldberg MS, Martin B. RE: External validation of the Melanoma Institute Australia sentinel lymph metastasis risk prediction tool using the National Cancer Database. J Am Acad Dermatol 2024; 91:e73-e74. [PMID: 38734239 DOI: 10.1016/j.jaad.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Peter A Prieto
- Division of Surgical Oncology, Department of Surgery, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development, Castle Biosciences, Inc, Friendswood, Texas
| | - Brian Martin
- Research and Development, Castle Biosciences, Inc, Friendswood, Texas.
| |
Collapse
|
6
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Liu R, Liu Y, Li C, Agyapong DAY, Feng J, Tang L, Zeng H. Sensitive detection of HSP70 using a current-amplified biosensor based on antibody-loaded PS-AuNPs@Cys/Au modified ITO chip. Mikrochim Acta 2024; 191:272. [PMID: 38634999 DOI: 10.1007/s00604-024-06333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
A biosensing electrochemical platform for heat shock protein 70 (HSP70) has been developed by integrating a three-electrode indium tin oxide (ITO) on a chip. The platform includes modifications to the reference electrode and working electrode for the detection of HSP70. The new platform is constructed by assembly of HSP70 antibody on PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode to create a high HSP70 sensitive surface. The PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode is obtained by immersing the ITO electrode into the PS-AuNPs@Cys solution and performing constant potential deposition at -1.4 V (Ag/AgCl). The PS-AuNPs@Cys/Au film deposited on ITO glass provides a desirable substrate for the immobilization of the HSP70 antibody and improves the loading of antibody between PS-AuNPs@Cys/Au and the electrode resulting in a significant amplification. Under optimal conditions, the fabricated sensor demonstrates a linear range extending from 0.1 ng mL- 1 to 1000 ng mL- 1, with an impressive detection limit of 25.7 pg mL- 1 (S/N = 3). The developed immunoassay method successfully detected the HSP70 content in normal human blood samples and outperformed the ELISA method commonly used for clinical sample analysis.
Collapse
Affiliation(s)
- Ruming Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yan Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chaoyu Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Dorothy Araba Yakoba Agyapong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Biomedical Engineering Program, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongjuan Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
8
|
Cooper WA, Tan PH. Predictive and prognostic biomarkers in solid tumours. Pathology 2024; 56:145-146. [PMID: 38212231 DOI: 10.1016/j.pathol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Affiliation(s)
- Wendy A Cooper
- Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.
| | | |
Collapse
|