1
|
Yao L, Guan J, Xie P, Chung C, Deng J, Huang Y, Chiang Y, Lee T. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Protein Sci 2024; 33:e5006. [PMID: 38723168 PMCID: PMC11081525 DOI: 10.1002/pro.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Chia‐Ru Chung
- Department of Computer Science and Information EngineeringNational Central UniversityTaoyuanTaiwan
| | - Junyang Deng
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Yixian Huang
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Ying‐Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Tzong‐Yi Lee
- Institute of Bioinformatics and Systems BiologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
2
|
Yao L, Guan J, Li W, Chung CR, Deng J, Chiang YC, Lee TY. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation. Anal Chem 2024; 96:1538-1546. [PMID: 38226973 DOI: 10.1021/acs.analchem.3c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis that poses a significant threat to human health. The emergence of drug-resistant strains has made the global fight against TB even more challenging. Antituberculosis peptides (ATPs) have shown promising results as a potential treatment for TB. However, conventional wet lab-based approaches to ATP discovery are time-consuming and costly and often fail to discover peptides with desired properties. To address these challenges, we propose a novel machine learning-based framework called ATPfinder that can significantly accelerate the discovery of ATP. Our approach integrates various efficient peptide descriptors and utilizes the deep forest algorithm to construct the model. This neural network-like cascading structure can effectively process and mine features without complex hyperparameter tuning. Our experimental results show that ATPfinder outperforms existing ATP prediction tools, achieving state-of-the-art performance with an accuracy of 89.3% and an MCC of 0.70. Moreover, our framework exhibits better robustness than baseline algorithms commonly used for other sequence analysis tasks. Additionally, the excellent interpretability of our model can assist researchers in understanding the critical features of ATP. Finally, we developed a downloadable desktop application to simplify the use of our framework for researchers. Therefore, ATPfinder can facilitate the discovery of peptide drugs and provide potential solutions for TB treatment. Our framework is freely available at https://github.com/lantianyao/ATPfinder/ (data sets and code) and https://awi.cuhk.edu.cn/dbAMP/ATPfinder.html (software).
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Wenshuo Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, 320317 Taoyuan, Taiwan
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
3
|
Guan J, Yao L, Chung CR, Xie P, Zhang Y, Deng J, Chiang YC, Lee TY. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J Chem Inf Model 2023; 63:7886-7898. [PMID: 38054927 DOI: 10.1021/acs.jcim.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Guan J, Yao L, Chung CR, Chiang YC, Lee TY. StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture. Int J Mol Sci 2023; 24:10348. [PMID: 37373494 DOI: 10.3390/ijms241210348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
One of the major challenges in cancer therapy lies in the limited targeting specificity exhibited by existing anti-cancer drugs. Tumor-homing peptides (THPs) have emerged as a promising solution to this issue, due to their capability to specifically bind to and accumulate in tumor tissues while minimally impacting healthy tissues. THPs are short oligopeptides that offer a superior biological safety profile, with minimal antigenicity, and faster incorporation rates into target cells/tissues. However, identifying THPs experimentally, using methods such as phage display or in vivo screening, is a complex, time-consuming task, hence the need for computational methods. In this study, we proposed StackTHPred, a novel machine learning-based framework that predicts THPs using optimal features and a stacking architecture. With an effective feature selection algorithm and three tree-based machine learning algorithms, StackTHPred has demonstrated advanced performance, surpassing existing THP prediction methods. It achieved an accuracy of 0.915 and a 0.831 Matthews Correlation Coefficient (MCC) score on the main dataset, and an accuracy of 0.883 and a 0.767 MCC score on the small dataset. StackTHPred also offers favorable interpretability, enabling researchers to better understand the intrinsic characteristics of THPs. Overall, StackTHPred is beneficial for both the exploration and identification of THPs and facilitates the development of innovative cancer therapies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong (Shenzhen) 2001 Longxiang Road, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Chia-Ru Chung
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong (Shenzhen) 2001 Longxiang Road, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
5
|
Agrawal S, Sisodia DS, Nagwani NK. Augmented sequence features and subcellular localization for functional characterization of unknown protein sequences. Med Biol Eng Comput 2021; 59:2297-2310. [PMID: 34545514 DOI: 10.1007/s11517-021-02436-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 08/29/2021] [Indexed: 11/24/2022]
Abstract
Advances in high-throughput techniques lead to evolving a large number of unknown protein sequences (UPS). Functional characterization of UPS is significant for the investigation of disease symptoms and drug repositioning. Protein subcellular localization is imperative for the functional characterization of protein sequences. Diverse techniques are used on protein sequences for feature extraction. However, many times a single feature extraction technique leads to poor prediction performance. In this paper, two feature augmentations are described through sequence induced, physicochemical, and evolutionary information of the amino acid residues. While augmented features preserve the sequence-order-information and protein-residue-properties. Two bacterial protein datasets Gram-Positive (G +) and Gram-Negative (G-) are utilized for the experimental work. After performing essential preprocessing on protein datasets, two sets of feature vectors are obtained. These feature vectors are used separately to train the different individual and ensembles such as decision tree (C 4.5), k-nearest neighbor (k-NN), multi-layer perceptron (MLP), Naïve Bayes (NB), support vector machine (SVM), AdaBoost, gradient boosting machine (GBM), and random forest (RF) with fivefold cross-validation. Prediction results of the model demonstrate that overall accuracy reported by C4.5 is highest 99.57% on G + and 97.47% on G- datasets with known protein sequences. Similarly, for the UPS overall accuracy of G + is 85.17% with SVM and 82.45% with G- dataset using MLP.
Collapse
Affiliation(s)
- Saurabh Agrawal
- Department of Computer Science & Engineering, National Institute of Technology Raipur, GE Road, Raipur, Chhattisgarh, 492010, India.
| | - Dilip Singh Sisodia
- Department of Computer Science & Engineering, National Institute of Technology Raipur, GE Road, Raipur, Chhattisgarh, 492010, India
| | - Naresh Kumar Nagwani
- Department of Computer Science & Engineering, National Institute of Technology Raipur, GE Road, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
6
|
Pang Y, Yao L, Jhong JH, Wang Z, Lee TY. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches. Brief Bioinform 2021; 22:6323205. [PMID: 34279599 DOI: 10.1093/bib/bbab263] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Antiviral peptide (AVP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against virus infection. Machine learning-based prediction with a computational biology approach can facilitate the development of the novel therapeutic agents. In this study, we proposed a double-stage classification scheme, named AVPIden, for predicting the AVPs and their functional activities against different viruses. The first stage is to distinguish the AVP from a broad-spectrum peptide collection, including not only the regular peptides (non-AMP) but also the AMPs without antiviral functions (non-AVP). The second stage is responsible for characterizing one or more virus families or species that the AVP targets. Imbalanced learning is utilized to improve the performance of prediction. The AVPIden uses multiple descriptors to precisely demonstrate the peptide properties and adopts explainable machine learning strategies based on Shapley value to exploit how the descriptors impact the antiviral activities. Finally, the evaluation performance of the proposed model suggests its ability to predict the antivirus activities and their potential functions against six virus families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight kinds of virus (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). The AVPIden gives an option for reinforcing the development of AVPs with the computer-aided method and has been deployed at http://awi.cuhk.edu.cn/AVPIden/.
Collapse
Affiliation(s)
- Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China
| |
Collapse
|
7
|
El-Ansary A, Zayed N, Al-Ayadhi L, Qasem H, Anwar M, Meguid NA, Bhat RS, Doşa MD, Chirumbolo S, Bjørklund G. GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol Belg 2021; 121:489-501. [PMID: 31673995 DOI: 10.1007/s13760-019-01226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is classified as a neurodevelopmental disorder characterized by reduced social communication as well as repetitive behaviors. Many studies have proved that defective synapses in ASD influence how neurons in the brain connect and communicate with each other. Synaptopathies arise from alterations that affecting the integrity and/or functionality of synapses and can contribute to synaptic pathologies. This study investigated the GABA levels in plasma being an inhibitory neurotransmitter, caspase 3 and 9 as pro-apoptotic proteins in 20 ASD children and 20 neurotypical controls using the ELISA technique. Analysis of receiver-operating characteristic (ROC) of the data that was obtained to evaluate the diagnostic value of the aforementioned evaluated biomarkers. Pearson's correlations and multiple regressions between the measured variables were also done. While GABA level was reduced in ASD patients, levels of caspases 3 and 9 were significantly higher when compared to neurotypical control participants. ROC and predictiveness curves showed that caspases 3, caspases 9, and GABA might be utilized as predictive markers in autism diagnosis. The present study indicates that the presence of GABAergic dysfunction promotes apoptosis in Egyptian ASD children. The obtained GABA synaptopathies and their connection with apoptosis can both relate to neuronal excitation, and imbalance of the inhibition system, which can be used as reliable predictive biomarkers for ASD.
Collapse
|
8
|
Pang Y, Wang Z, Jhong JH, Lee TY. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies. Brief Bioinform 2021; 22:1085-1095. [PMID: 33497434 PMCID: PMC7929366 DOI: 10.1093/bib/bbaa423] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
As the current worldwide outbreaks of the SARS-CoV-2, it is urgently needed to develop effective therapeutic agents for inhibiting the pathogens or treating the related diseases. Antimicrobial peptides (AMP) with functional activity against coronavirus could be a considerable solution, yet there is no research for identifying anti-coronavirus (anti-CoV) peptides with the computational approach. In this study, we first investigated the physiochemical and compositional properties of the collected anti-CoV peptides by comparing against three other negative sets: antivirus peptides without anti-CoV function (antivirus), regular AMP without antivirus functions (non-AVP) and peptides without antimicrobial functions (non-AMP). Then, we established classifiers for identifying anti-CoV peptides between different negative sets based on random forest. Imbalanced learning strategies were adopted due to the severe class-imbalance within the datasets. The geometric mean of the sensitivity and specificity (GMean) under the identification from antivirus, non-AVP and non-AMP reaches 83.07%, 85.51% and 98.82%, respectively. Then, to pursue identifying anti-CoV peptides from broad-spectrum peptides, we designed a double-stages classifier based on the collected datasets. In the first stage, the classifier characterizes AMPs from regular peptides. It achieves an area under the receiver operating curve (AUCROC) value of 97.31%. The second stage is to identify the anti-CoV peptides between the combined negatives of other AMPs. Here, the GMean of evaluation on the independent test set is 79.42%. The proposed approach is considered as an applicable scheme for assisting the development of novel anti-CoV peptides. The datasets and source codes used in this study are available at https://github.com/poncey/PreAntiCoV.
Collapse
Affiliation(s)
- Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
| | - Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China
| |
Collapse
|
9
|
iDRP-PseAAC: Identification of DNA Replication Proteins Using General PseAAC and Position Dependent Features. Int J Pept Res Ther 2021; 27:1315-1329. [PMID: 33584161 PMCID: PMC7869428 DOI: 10.1007/s10989-021-10170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 10/25/2022]
Abstract
DNA replication is one of the specific processes to be considered in all the living organisms, specifically eukaryotes. The prevalence of DNA replication is significant for an evolutionary transition at the beginning of life. DNA replication proteins are those proteins which support the process of replication and are also reported to be important in drug design and discovery. This information depicts that DNA replication proteins have a very important role in human bodies, however, to study their mechanism, their identification is necessary. Thus, it is a very important task but, in any case, an experimental identification is time-consuming, highly-costly and laborious. To cope with this issue, a computational methodology is required for prediction of these proteins, however, no prior method exists. This study comprehends the construction of novel prediction model to serve the proposed purpose. The prediction model is developed based on the artificial neural network by integrating the position relative features and sequence statistical moments in PseAAC for training neural networks. Highest overall accuracy has been achieved through tenfold cross-validation and Jackknife testing that was computed to be 96.22% and 98.56%, respectively. Our astonishing experimental results demonstrated that the proposed predictor surpass the existing models that can be served as a time and cost-effective stratagem for designing novel drugs to strike the contemporary bacterial infection.
Collapse
|
10
|
Refahi MS, Mir A, Nasiri JA. A novel fusion based on the evolutionary features for protein fold recognition using support vector machines. Sci Rep 2020; 10:14368. [PMID: 32873824 PMCID: PMC7463267 DOI: 10.1038/s41598-020-71172-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/10/2020] [Indexed: 11/29/2022] Open
Abstract
Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and protein functions. Several approaches have been employed for the prediction of protein folds. Some of these approaches are based on extracting features from protein sequences and using a strong classifier. Feature extraction techniques generally utilize syntactical-based information, evolutionary-based information and physicochemical-based information to extract features. In recent years, finding an efficient technique for integrating discriminate features have been received advancing attention. In this study, we integrate Auto-Cross-Covariance and Separated dimer evolutionary feature extraction methods. The results’ features are scored by Information gain to define and select several discriminated features. According to three benchmark datasets, DD, RDD ,and EDD, the results of the support vector machine show more than 6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% improvement in accuracy on these benchmark datasets.
Collapse
Affiliation(s)
- Mohammad Saleh Refahi
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - A Mir
- Iranian Research Institute for Information Science and Technology (IranDoc), Tehran, Iran
| | - Jalal A Nasiri
- Iranian Research Institute for Information Science and Technology (IranDoc), Tehran, Iran.
| |
Collapse
|
11
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
12
|
|
13
|
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020; 295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Facing the explosive growth of biological sequences unearthed in the post-genomic age, one of the most important but also most difficult problems in computational biology is how to express a biological sequence with a discrete model or a vector, but still keep it with considerable sequence-order information or its special pattern. To deal with such a challenging problem, the ideas of "pseudo amino acid components" and "pseudo K-tuple nucleotide composition" have been proposed. The ideas and their approaches have further stimulated the birth for "distorted key theory", "wenxing diagram", and substantially strengthening the power in treating the multi-label systems, as well as the establishment of the famous "5-steps rule". All these logic developments are quite natural that are very useful not only for theoretical scientists but also for experimental scientists in conducting genetics/genomics analysis and drug development. Presented in this review paper are also their future perspectives; i.e., their impacts will become even more significant and propounding.
Collapse
|
14
|
Shao YT, Liu XX, Lu Z, Chou KC. pLoc_Deep-mHum: Predict Subcellular Localization of Human Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.127042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Shao Y, Chou KC. pLoc_Deep-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.126034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Protein sequence information extraction and subcellular localization prediction with gapped k-Mer method. BMC Bioinformatics 2019; 20:719. [PMID: 31888447 PMCID: PMC6936157 DOI: 10.1186/s12859-019-3232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Subcellular localization prediction of protein is an important component of bioinformatics, which has great importance for drug design and other applications. A multitude of computational tools for proteins subcellular location have been developed in the recent decades, however, existing methods differ in the protein sequence representation techniques and classification algorithms adopted. RESULTS In this paper, we firstly introduce two kinds of protein sequences encoding schemes: dipeptide information with space and Gapped k-mer information. Then, the Gapped k-mer calculation method which is based on quad-tree is also introduced. CONCLUSIONS >From the prediction results, this method not only reduces the dimension, but also improves the prediction precision of protein subcellular localization.
Collapse
|
17
|
pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics 2019; 111:1274-1282. [DOI: 10.1016/j.ygeno.2018.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
18
|
Chou KC. Proposing Pseudo Amino Acid Components is an Important Milestone for Proteome and Genome Analyses. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09910-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
|
20
|
Xiao X, Cheng X, Chen G, Mao Q, Chou KC. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset. Med Chem 2019; 15:496-509. [DOI: 10.2174/1573406415666181217114710] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Background/Objective:Knowledge of protein subcellular localization is vitally important for both basic research and drug development. Facing the avalanche of protein sequences emerging in the post-genomic age, it is urgent to develop computational tools for timely and effectively identifying their subcellular localization based on the sequence information alone. Recently, a predictor called “pLoc-mVirus” was developed for identifying the subcellular localization of virus proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, known as “multiplex proteins”, may simultaneously occur in, or move between two or more subcellular location sites. Despite the fact that it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mVirus was trained by an extremely skewed dataset in which some subset was over 10 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset.Methods:Using the Chou's general PseAAC (Pseudo Amino Acid Composition) approach and the IHTS (Inserting Hypothetical Training Samples) treatment to balance out the training dataset, we have developed a new predictor called “pLoc_bal-mVirus” for predicting the subcellular localization of multi-label virus proteins.Results:Cross-validation tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mVirus, the existing state-of-theart predictor for the same purpose.Conclusion:Its user-friendly web-server is available at http://www.jci-bioinfo.cn/pLoc_balmVirus/, by which the majority of experimental scientists can easily get their desired results without the need to go through the detailed complicated mathematics. Accordingly, pLoc_bal-mVirus will become a very useful tool for designing multi-target drugs and in-depth understanding of the biological process in a cell.
Collapse
Affiliation(s)
- Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Genqiang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Mao
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
21
|
Chou KC, Cheng X, Xiao X. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset. Med Chem 2019; 15:472-485. [DOI: 10.2174/1573406415666181218102517] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
<P>Background/Objective: Information of protein subcellular localization is crucially important for both basic research and drug development. With the explosive growth of protein sequences discovered in the post-genomic age, it is highly demanded to develop powerful bioinformatics tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called “pLoc-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems where many proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mEuk was trained by an extremely skewed dataset where some subset was about 200 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset. </P><P> Methods: To alleviate such bias, we have developed a new predictor called pLoc_bal-mEuk by quasi-balancing the training dataset. Cross-validation tests on exactly the same experimentconfirmed dataset have indicated that the proposed new predictor is remarkably superior to pLocmEuk, the existing state-of-the-art predictor in identifying the subcellular localization of eukaryotic proteins. It has not escaped our notice that the quasi-balancing treatment can also be used to deal with many other biological systems. </P><P> Results: To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/. </P><P> Conclusion: It is anticipated that the pLoc_bal-Euk predictor holds very high potential to become a useful high throughput tool in identifying the subcellular localization of eukaryotic proteins, particularly for finding multi-target drugs that is currently a very hot trend trend in drug development.</P>
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
22
|
Predicting Apoptosis Protein Subcellular Locations based on the Protein Overlapping Property Matrix and Tri-Gram Encoding. Int J Mol Sci 2019; 20:ijms20092344. [PMID: 31083553 PMCID: PMC6539631 DOI: 10.3390/ijms20092344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.
Collapse
|
23
|
Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features. Molecules 2019; 24:molecules24050919. [PMID: 30845684 PMCID: PMC6429470 DOI: 10.3390/molecules24050919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
The prediction of protein subcellular localization is critical for inferring protein functions, gene regulations and protein-protein interactions. With the advances of high-throughput sequencing technologies and proteomic methods, the protein sequences of numerous yeasts have become publicly available, which enables us to computationally predict yeast protein subcellular localization. However, widely-used protein sequence representation techniques, such as amino acid composition and the Chou's pseudo amino acid composition (PseAAC), are difficult in extracting adequate information about the interactions between residues and position distribution of each residue. Therefore, it is still urgent to develop novel sequence representations. In this study, we have presented two novel protein sequence representation techniques including Generalized Chaos Game Representation (GCGR) based on the frequency and distributions of the residues in the protein primary sequence, and novel statistics and information theory (NSI) reflecting local position information of the sequence. In the GCGR + NSI representation, a protein primary sequence is simply represented by a 5-dimensional feature vector, while other popular methods like PseAAC and dipeptide adopt features of more than hundreds of dimensions. In practice, the feature representation is highly efficient in predicting protein subcellular localization. Even without using machine learning-based classifiers, a simple model based on the feature vector can achieve prediction accuracies of 0.8825 and 0.7736 respectively for the CL317 and ZW225 datasets. To further evaluate the effectiveness of the proposed encoding schemes, we introduce a multi-view features-based method to combine the two above-mentioned features with other well-known features including PseAAC and dipeptide composition, and use support vector machine as the classifier to predict protein subcellular localization. This novel model achieves prediction accuracies of 0.927 and 0.871 respectively for the CL317 and ZW225 datasets, better than other existing methods in the jackknife tests. The results suggest that the GCGR and NSI features are useful complements to popular protein sequence representations in predicting yeast protein subcellular localization. Finally, we validate a few newly predicted protein subcellular localizations by evidences from some published articles in authority journals and books.
Collapse
|
24
|
Cheng X, Xiao X, Chou KC. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J Theor Biol 2018; 458:92-102. [DOI: 10.1016/j.jtbi.2018.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
|
25
|
Zhang S, Liang Y. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC. J Theor Biol 2018; 457:163-169. [DOI: 10.1016/j.jtbi.2018.08.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
26
|
Yu B, Li S, Qiu W, Wang M, Du J, Zhang Y, Chen X. Prediction of subcellular location of apoptosis proteins by incorporating PsePSSM and DCCA coefficient based on LFDA dimensionality reduction. BMC Genomics 2018; 19:478. [PMID: 29914358 PMCID: PMC6006758 DOI: 10.1186/s12864-018-4849-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Apoptosis is associated with some human diseases, including cancer, autoimmune disease, neurodegenerative disease and ischemic damage, etc. Apoptosis proteins subcellular localization information is very important for understanding the mechanism of programmed cell death and the development of drugs. Therefore, the prediction of subcellular localization of apoptosis protein is still a challenging task. RESULTS In this paper, we propose a novel method for predicting apoptosis protein subcellular localization, called PsePSSM-DCCA-LFDA. Firstly, the protein sequences are extracted by combining pseudo-position specific scoring matrix (PsePSSM) and detrended cross-correlation analysis coefficient (DCCA coefficient), then the extracted feature information is reduced dimensionality by LFDA (local Fisher discriminant analysis). Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of the apoptosis proteins. The overall prediction accuracy of 99.7, 99.6 and 100% are achieved respectively on the three benchmark datasets by the most rigorous jackknife test, which is better than other state-of-the-art methods. CONCLUSION The experimental results indicate that our method can significantly improve the prediction accuracy of subcellular localization of apoptosis proteins, which is quite high to be able to become a promising tool for further proteomics studies. The source code and all datasets are available at https://github.com/QUST-BSBRC/PsePSSM-DCCA-LFDA/ .
Collapse
Affiliation(s)
- Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Shan Li
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Wenying Qiu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Junwei Du
- College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, 264209, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 21116, China
| |
Collapse
|
27
|
pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics 2018; 111:886-892. [PMID: 29842950 DOI: 10.1016/j.ygeno.2018.05.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called "pLoc-mGpos" was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics.
Collapse
|
28
|
Tang Y, Xie L, Chen L. iAPSL-IF: Identification of Apoptosis Protein Subcellular Location Using Integrative Features Captured from Amino Acid Sequences. Int J Mol Sci 2018; 19:ijms19041190. [PMID: 29652843 PMCID: PMC5979326 DOI: 10.3390/ijms19041190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022] Open
Abstract
Apoptosis proteins (APs) control normal tissue homeostasis by regulating the balance between cell proliferation and death. The function of APs is strongly related to their subcellular location. To date, computational methods have been reported that reliably identify the subcellular location of APs, however, there is still room for improvement of the prediction accuracy. In this study, we developed a novel method named iAPSL-IF (identification of apoptosis protein subcellular location—integrative features), which is based on integrative features captured from Markov chains, physicochemical property matrices, and position-specific score matrices (PSSMs) of amino acid sequences. The matrices with different lengths were transformed into fixed-length feature vectors using an auto cross-covariance (ACC) method. An optimal subset of the features was chosen using a recursive feature elimination (RFE) algorithm method, and the sequences with these features were trained by a support vector machine (SVM) classifier. Based on three datasets ZD98, CL317, and ZW225, the iAPSL-IF was examined using a jackknife cross-validation test. The resulting data showed that the iAPSL-IF outperformed the known predictors reported in the literature: its overall accuracy on the three datasets was 98.98% (ZD98), 94.95% (CL317), and 97.33% (ZW225), respectively; the Matthews correlation coefficient, sensitivity, and specificity for several classes of subcellular location proteins (e.g., membrane proteins, cytoplasmic proteins, endoplasmic reticulum proteins, nuclear proteins, and secreted proteins) in the datasets were 0.92–1.0, 94.23–100%, and 97.07–100%, respectively. Overall, the results of this study provide a high throughput and sequence-based method for better identification of the subcellular location of APs, and facilitates further understanding of programmed cell death in organisms.
Collapse
Affiliation(s)
- Yadong Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
29
|
Wan S, Duan Y, Zou Q. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source. Proteomics 2017; 17. [PMID: 28776938 DOI: 10.1002/pmic.201700262] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Indexed: 11/11/2022]
Abstract
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred.
Collapse
Affiliation(s)
- Shixiang Wan
- School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yucong Duan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Information and Technology, Hainan University, Haikou, Hainan, P. R. China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
30
|
Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising. Oncotarget 2017; 8:107640-107665. [PMID: 29296195 PMCID: PMC5746097 DOI: 10.18632/oncotarget.22585] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.
Collapse
|
31
|
Cheng X, Xiao X, Chou KC. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2017; 34:1448-1456. [DOI: 10.1093/bioinformatics/btx711] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Xiang Cheng
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Xuan Xiao
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Cheng X, Xiao X, Chou KC. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 2017; 110:S0888-7543(17)30102-7. [PMID: 28989035 DOI: 10.1016/j.ygeno.2017.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.
Collapse
Affiliation(s)
- Xiang Cheng
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:9183796. [PMID: 28744305 PMCID: PMC5514333 DOI: 10.1155/2017/9183796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/05/2023]
Abstract
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.
Collapse
|
34
|
Yan K, Xu Y, Fang X, Zheng C, Liu B. Protein fold recognition based on sparse representation based classification. Artif Intell Med 2017; 79:1-8. [DOI: 10.1016/j.artmed.2017.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
|
35
|
Xiang Q, Liao B, Li X, Xu H, Chen J, Shi Z, Dai Q, Yao Y. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine. Artif Intell Med 2017; 78:41-46. [PMID: 28764871 DOI: 10.1016/j.artmed.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In this paper, a high-quality sequence encoding scheme is proposed for predicting subcellular location of apoptosis proteins. METHODS In the proposed methodology, the novel evolutionary-conservative information is introduced to represent protein sequences. Meanwhile, based on the proportion of golden section in mathematics, position-specific scoring matrix (PSSM) is divided into several blocks. Then, these features are predicted by support vector machine (SVM) and the predictive capability of proposed method is implemented by jackknife test RESULTS: The results show that the golden section method is better than no segmentation method. The overall accuracy for ZD98 and CL317 is 98.98% and 91.11%, respectively, which indicates that our method can play a complimentary role to the existing methods in the relevant areas. CONCLUSIONS The proposed feature representation is powerful and the prediction accuracy will be improved greatly, which denotes our method provides the state-of-the-art performance for predicting subcellular location of apoptosis proteins.
Collapse
Affiliation(s)
- Qilin Xiang
- School of Information Science and Engineering, Hunan University, Changsha 410082, China
| | - Bo Liao
- School of Information Science and Engineering, Hunan University, Changsha 410082, China
| | - Xianhong Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhuoxing Shi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhua Yao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
36
|
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.94007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Liang Y, Liu S, Zhang S. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization. Math Biosci 2016; 282:61-67. [PMID: 27720879 DOI: 10.1016/j.mbs.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/02/2023]
Abstract
Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China.
| | - Sanyang Liu
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
| |
Collapse
|
38
|
Improving protein fold recognition and structural class prediction accuracies using physicochemical properties of amino acids. J Theor Biol 2016; 402:117-28. [PMID: 27164998 DOI: 10.1016/j.jtbi.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/24/2022]
Abstract
Predicting the three-dimensional (3-D) structure of a protein is an important task in the field of bioinformatics and biological sciences. However, directly predicting the 3-D structure from the primary structure is hard to achieve. Therefore, predicting the fold or structural class of a protein sequence is generally used as an intermediate step in determining the protein's 3-D structure. For protein fold recognition (PFR) and structural class prediction (SCP), two steps are required - feature extraction step and classification step. Feature extraction techniques generally utilize syntactical-based information, evolutionary-based information and physicochemical-based information to extract features. In this study, we explore the importance of utilizing the physicochemical properties of amino acids for improving PFR and SCP accuracies. For this, we propose a Forward Consecutive Search (FCS) scheme which aims to strategically select physicochemical attributes that will supplement the existing feature extraction techniques for PFR and SCP. An exhaustive search is conducted on all the existing 544 physicochemical attributes using the proposed FCS scheme and a subset of physicochemical attributes is identified. Features extracted from these selected attributes are then combined with existing syntactical-based and evolutionary-based features, to show an improvement in the recognition and prediction performance on benchmark datasets.
Collapse
|
39
|
Wang X, Li H, Zhang Q, Wang R. Predicting Subcellular Localization of Apoptosis Proteins Combining GO Features of Homologous Proteins and Distance Weighted KNN Classifier. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1793272. [PMID: 27213149 PMCID: PMC4860209 DOI: 10.1155/2016/1793272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023]
Abstract
Apoptosis proteins play a key role in maintaining the stability of organism; the functions of apoptosis proteins are related to their subcellular locations which are used to understand the mechanism of programmed cell death. In this paper, we utilize GO annotation information of apoptosis proteins and their homologous proteins retrieved from GOA database to formulate feature vectors and then combine the distance weighted KNN classification algorithm with them to solve the data imbalance problem existing in CL317 data set to predict subcellular locations of apoptosis proteins. It is found that the number of homologous proteins can affect the overall prediction accuracy. Under the optimal number of homologous proteins, the overall prediction accuracy of our method on CL317 data set reaches 96.8% by Jackknife test. Compared with other existing methods, it shows that our proposed method is very effective and better than others for predicting subcellular localization of apoptosis proteins.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Li
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Qiuwen Zhang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Rong Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
40
|
Lyons J, Paliwal KK, Dehzangi A, Heffernan R, Tsunoda T, Sharma A. Protein fold recognition using HMM–HMM alignment and dynamic programming. J Theor Biol 2016; 393:67-74. [DOI: 10.1016/j.jtbi.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
41
|
Sharma R, Dehzangi A, Lyons J, Paliwal K, Tsunoda T, Sharma A. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. IEEE Trans Nanobioscience 2015; 14:915-26. [DOI: 10.1109/tnb.2015.2500186] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Christopher JJ, Nehemiah HK, Kannan A. A Swarm Optimization approach for clinical knowledge mining. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 121:137-148. [PMID: 26115604 DOI: 10.1016/j.cmpb.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. METHODS WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. RESULTS Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. CONCLUSION WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy.
Collapse
Affiliation(s)
- J Jabez Christopher
- Ramanujan Computing Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - H Khanna Nehemiah
- Ramanujan Computing Centre, Anna University, Chennai 600025, Tamil Nadu, India.
| | - A Kannan
- Department of Information Science and Technology, Anna University, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
43
|
Saini H, Raicar G, Sharma A, Lal S, Dehzangi A, Lyons J, Paliwal KK, Imoto S, Miyano S. Probabilistic expression of spatially varied amino acid dimers into general form of Chou׳s pseudo amino acid composition for protein fold recognition. J Theor Biol 2015; 380:291-8. [PMID: 26079221 DOI: 10.1016/j.jtbi.2015.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Identification of the tertiary structure (3D structure) of a protein is a fundamental problem in biology which helps in identifying its functions. Predicting a protein׳s fold is considered to be an intermediate step for identifying the tertiary structure of a protein. Computational methods have been applied to determine a protein׳s fold by assembling information from its structural, physicochemical and/or evolutionary properties. METHODS In this study, we propose a scheme in which a feature extraction technique that extracts probabilistic expressions of amino acid dimers, which have varying degree of spatial separation in the primary sequences of proteins, from the Position Specific Scoring Matrix (PSSM). SVM classifier is used to create a model from extracted features for fold recognition. RESULTS The performance of the proposed scheme is evaluated against three benchmarked datasets, namely the Ding and Dubchak, Extended Ding and Dubchak, and Taguchi and Gromiha datasets. CONCLUSIONS The proposed scheme performed well in the experiments conducted, providing improvements over previously published results in literature.
Collapse
Affiliation(s)
| | | | - Alok Sharma
- University of the South Pacific, Fiji; Griffith University, Brisbane, Australia.
| | - Sunil Lal
- University of the South Pacific, Fiji.
| | | | | | | | - Seiya Imoto
- Human Genome Center, University of Tokyo, Japan.
| | | |
Collapse
|
44
|
Mendialdua I, Arruti A, Jauregi E, Lazkano E, Sierra B. Classifier Subset Selection to construct multi-classifiers by means of estimation of distribution algorithms. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Gu Q, Ding YS, Zhang TL. An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Prediction of drug indications based on chemical interactions and chemical similarities. BIOMED RESEARCH INTERNATIONAL 2015; 2015:584546. [PMID: 25821813 PMCID: PMC4363546 DOI: 10.1155/2015/584546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs.
Collapse
|
47
|
Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. MOLECULAR BIOSYSTEMS 2015; 11:2620-34. [DOI: 10.1039/c5mb00155b] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| | - Hao Lin
- Gordon Life Science Institute
- Boston
- USA
- Key Laboratory for Neuro-Information of Ministry of Education
- Center of Bioinformatics
| | - Kuo-Chen Chou
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| |
Collapse
|
48
|
Chen J, Tang YY, Chen CLP, Fang B, Lin Y, Shang Z. Multi-Label Learning With Fuzzy Hypergraph Regularization for Protein Subcellular Location Prediction. IEEE Trans Nanobioscience 2014; 13:438-47. [DOI: 10.1109/tnb.2014.2341111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Liu T, Tao P, Li X, Qin Y, Wang C. Prediction of subcellular location of apoptosis proteins combining tri-gram encoding based on PSSM and recursive feature elimination. J Theor Biol 2014; 366:8-12. [PMID: 25463695 DOI: 10.1016/j.jtbi.2014.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
Knowledge of apoptosis proteins plays an important role in understanding the mechanism of programmed cell death. Obtaining information on subcellular location of apoptosis proteins is very helpful to reveal the apoptosis mechanism and understand the function of apoptosis proteins. Because of the cost in time and labor associated with large-scale wet-bench experiments, computational prediction of apoptosis proteins subcellular location becomes very important and many computational tools have been developed in the recent decades. Existing methods differ in the protein sequence representation techniques and classification algorithms adopted. In this study, we firstly introduce a sequence encoding scheme based on tri-grams computed directly from position-specific score matrices, which incorporates evolution information represented in the PSI-BLAST profile and sequence-order information. Then SVM-RFE algorithm is applied for feature selection and reduced vectors are input to a support vector machine classifier to predict subcellular location of apoptosis proteins. Jackknife tests on three widely used datasets show that our method provides the state-of-the-art performance in comparison with other existing methods.
Collapse
Affiliation(s)
- Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiying Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowei Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yufang Qin
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Wang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
50
|
Paliwal KK, Sharma A, Lyons J, Dehzangi A. A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Trans Nanobioscience 2014; 13:44-50. [PMID: 24594513 DOI: 10.1109/tnb.2013.2296050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In biological sciences, the deciphering of a three dimensional structure of a protein sequence is considered to be an important and challenging task. The identification of protein folds from primary protein sequences is an intermediate step in discovering the three dimensional structure of a protein. This can be done by utilizing feature extraction technique to accurately extract all the relevant information followed by employing a suitable classifier to label an unknown protein. In the past, several feature extraction techniques have been developed but with limited recognition accuracy only. In this study, we have developed a feature extraction technique based on tri-grams computed directly from Position Specific Scoring Matrices. The effectiveness of the feature extraction technique has been shown on two benchmark datasets. The proposed technique exhibits up to 4.4% improvement in protein fold recognition accuracy compared to the state-of-the-art feature extraction techniques.
Collapse
|