Beier F, Beinert R, Steidl G. On a Linear Gromov-Wasserstein Distance.
IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022;
31:7292-7305. [PMID:
36378791 DOI:
10.1109/tip.2022.3221286]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gromov-Wasserstein distances are generalization of Wasserstein distances, which are invariant under distance preserving transformations. Although a simplified version of optimal transport in Wasserstein spaces, called linear optimal transport (LOT), was successfully used in practice, there does not exist a notion of linear Gromov-Wasserstein distances so far. In this paper, we propose a definition of linear Gromov-Wasserstein distances. We motivate our approach by a generalized LOT model, which is based on barycentric projection maps of transport plans. Numerical examples illustrate that the linear Gromov-Wasserstein distances, similarly as LOT, can replace the expensive computation of pairwise Gromov-Wasserstein distances in applications like shape classification.
Collapse