Jiang C, Wang S, Long Y, Li Z, Zhang H, Shao L. Imaginary-Connected Embedding in Complex Space for Unseen Attribute-Object Discrimination.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025;
47:1395-1413. [PMID:
39471109 DOI:
10.1109/tpami.2024.3487631]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of seen primitives. Prior studies have attempted to either learn primitives individually (non-connected) or establish dependencies among them in the composition (fully-connected). In contrast, human comprehension of composition diverges from the aforementioned methods as humans possess the ability to make composition-aware adaptation for these primitives, instead of inferring them rigidly through the aforementioned methods. However, developing a comprehension of compositions akin to human cognition proves challenging within the confines of real space. This arises from the limitation of real-space-based methods, which often categorize attributes, objects, and compositions using three independent measures, without establishing a direct dynamic connection. To tackle this challenge, we expand the CZSL distance metric scheme to encompass complex spaces to unify the independent measures, and we establish an imaginary-connected embedding in complex space to model human understanding of attributes. To achieve this representation, we introduce an innovative visual bias-based attribute extraction module that selectively extracts attributes based on object prototypes. As a result, we are able to incorporate phase information in training and inference, serving as a metric for attribute-object dependencies while preserving the independent acquisition of primitives. We evaluate the effectiveness of our proposed approach on three benchmark datasets, illustrating its superiority compared to baseline methods.
Collapse