1
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
2
|
Zamanian MY, Karimvandi MN, Nikbakhtzadeh M, Zahedi E, Bokov DO, Kujawska M, Heidari M, Rahmani MR. Effects of Modafinil (Provigil) on Memory and Learning in Experimental and Clinical Studies: From Molecular Mechanisms to Behaviour Molecular Mechanisms and Behavioural Effects. Curr Mol Pharmacol 2023; 16:507-516. [PMID: 36056861 DOI: 10.2174/1874467215666220901122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Modafinil (MOD, 2-diphenyl-methyl-sulphinil-2-acetamide) is a stimulant-like medicine used to treat narcolepsy. Off-label uses include improving cognitive ability in the course of other diseases. This review aims to discuss findings demonstrating the memory and learningenhancing activity of MOD in experimental and clinical studies. We included behavioral evaluations alongside the effects of MOD at the cellular and molecular level. MOD in different animal disease models exerted beneficial effects on induced memory and learning impairment, which in some cases were accompanied by modulation of neurotransmitter pathways or neuroplastic capabilities, reducing oxidative stress, or expression of synaptic proteins. Individuals treated with MOD showed improved memory and learning skills in different conditions. These effects were associated with regulating brain activity in some participants, confirmed by functional magnetic resonance imaging. Presented herein, data support the use of MOD in treating memory and learning deficits in various disease conditions.
Collapse
Affiliation(s)
| | | | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohammad Reza Rahmani
- Department of Physiology and Pharmacology, School of Medicine, Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
The Lateralization of Spatial Cognition in Table Tennis Players: Neuroplasticity in the Dominant Hemisphere. Brain Sci 2022; 12:brainsci12121607. [PMID: 36552067 PMCID: PMC9775476 DOI: 10.3390/brainsci12121607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Spatial cognition facilitates the successful completion of specific cognitive tasks through lateral processing and neuroplasticity. Long-term training in table tennis induces neural processing efficiency in the visuospatial cognitive processing cortex of athletes. However, the lateralization characteristics and neural mechanisms of visual−spatial cognitive processing in table tennis players in non-sport domains are unclear. This study utilized event-related potentials to investigate differences in the spatial cognition abilities of regular college students (controls) and table tennis players. A total of 48 participants (28 controls; 20 s-level national table tennis players) completed spatial cognitive tasks while electroencephalography data were recorded. Task performance was better in the table tennis group than in the control group (reaction time: P < 0.001; correct number/sec: P = 0.043), P3 amplitude was greater in the table tennis group (P = 0.040), spatial cognition showed obvious lateralization characteristics (P < 0.001), table tennis players showed a more obvious right-hemisphere advantage, and the P3 amplitude in the right hemisphere was significantly greater in table tennis athletes than in the control group. (P = 0.044). Our findings demonstrate a right-hemisphere advantage in spatial cognition. Long-term training strengthened the visual−spatial processing ability of table tennis players, and this advantage effect was reflected in the neuroplasticity of the right hemisphere (the dominant hemisphere for spatial processing).
Collapse
|
4
|
Yin F, Zhang J, Lu Y, Zhang Y, Liu J, Deji C, Qiao X, Gao K, Xu M, Lai J, Wang Y. Modafinil rescues repeated morphine-induced synaptic and behavioural impairments via activation of D1R-ERK-CREB pathway in medial prefrontal cortex. Addict Biol 2022; 27:e13103. [PMID: 34647651 DOI: 10.1111/adb.13103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Long-term opioid abuse causes a variety of long-lasting cognitive impairments such as attention, impulsivity and working memory. These cognitive impairments undermine behavioural treatment for drug abuse and lead to poor treatment retention and outcomes. Modafinil is a wake-promoting drug that shows potential in improving attention and memory in humans and animals. However, modafinil's effect on opioid-induced cognitive impairments remains unclear, and the underlying mechanism is poorly understood. This study showed that repeated morphine administration significantly impairs attention, increases impulsivity and reduces motivation to natural rewards in mice. Systemic modafinil treatment at low dose efficiently ameliorates morphine-induced attention dysfunction and improves motivation and working memory in mice. High dose of modafinil has adverse effects on impulsive action and attention. Local infusion of D1R antagonist SCH-23390 reverses the morphine-induced synaptic abnormalities and activation of the D1R-ERK-CREB pathway in medial prefrontal cortex (mPFC). This study demonstrated a protective effect of modafinil in mPFC neurons and offered a therapeutic potential for cognitive deficits in opioid abuse.
Collapse
Affiliation(s)
- Fangyuan Yin
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinyu Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ye Lu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuola Deji
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Zhang L, Shao Y, Jin X, Cai X, Du F. Decreased effective connectivity between insula and anterior cingulate cortex during a working memory task after prolonged sleep deprivation. Behav Brain Res 2021; 409:113263. [PMID: 33775776 DOI: 10.1016/j.bbr.2021.113263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Total sleep deprivation (TSD) causes a decline in almost all cognitive domains, especially working memory. However, we do not have a clear understanding of the degree working memory is impaired under prolonged TSD, nor do we know the underlying neurophysiological mechanism. In this study, we recorded EEG data from 64 subjects while they performed a working memory task during resting wakefulness, after 24 h TSD, and after 30 h TSD. ANOVA was used to verify performance differences between 24 h and 30 h TSD in working memory tasks: (1) reaction time and accuracy hit rates, (2) P200, N200, and P300 amplitude and latency in measurements of event-related potential, as well as (3) effective connectivity strength between brain areas associated with working memory. Compared to 24 h TSD, 30 h TSD significantly decreased accuracy hit rates and induced a larger N200 difference waveform. The effective connectivity analysis showed that 30 h TSD also decreased beta frequency in effective connection strength from the right insular lobe to the left anterior cingulate cortex (ACC). Effective connection from the left ventrolateral prefrontal cortex to the left dorsolateral prefrontal cortex increased in the match condition of the 2-back task. In conclusion, 30 h TSD had a greater negative impact on working memory than 24 h TSD. This impairment of working memory is associated with decreased strength in the effective connection from the right insula to the left ACC.
Collapse
Affiliation(s)
- Liwei Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongcong Shao
- Department of Psychology, Beijing Sport University, Beijing, 100084, China
| | - Xueguang Jin
- College of Software and Big Data, Changzhou College of Information Technology, Changzhou, 213164, China
| | - Xiaoping Cai
- Department of Cadra Word 3 Division, PLA Army General Hospital, Beijing, 100700, China
| | - Feng Du
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Peng Z, Dai C, Cai X, Zeng L, Li J, Xie S, Wang H, Yang T, Shao Y, Wang Y. Total Sleep Deprivation Impairs Lateralization of Spatial Working Memory in Young Men. Front Neurosci 2020; 14:562035. [PMID: 33122988 PMCID: PMC7573126 DOI: 10.3389/fnins.2020.562035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Total sleep deprivation (TSD) negatively affects cognitive function. Previous research has focused on individual variation in cognitive function following TSD, but we know less about how TSD influences the lateralization of spatial working memory. This study used event-related-potential techniques to explore asymmetry in spatial-working-memory impairment. Fourteen healthy male participants performed a two-back task with electroencephalogram (EEG) recordings conducted at baseline and after 36 h of TSD. We selected 12 EEG points corresponding to left and right sides of the brain and then observed changes in N2 and P3 components related to spatial working memory. Before TSD, P3 amplitude differed significantly between the left and right sides of the brain. This difference disappeared after TSD. Compared with baseline, P3 amplitude decreased for a duration as extended as the prolonged latency of N2 components. After 36 h of TSD, P3 amplitude decreased more in the right hemisphere than the left. We therefore conclude that TSD negatively affected spatial working memory, possibly through removing the right hemisphere advantage.
Collapse
Affiliation(s)
- Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiaoping Cai
- Department of Cadra Word 3 Division, PLA Army General Hospital, Beijing, China
| | - Lingjing Zeng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jialu Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Songyue Xie
- School of Psychology, Beijing Sport University, Beijing, China
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi Wang
- China Institute of Sports and Health Science, Beijing Sport University, Beijing, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| |
Collapse
|
7
|
The neuroprotective effect of osthole against chronic sleep deprivation (CSD)-induced memory impairment in rats. Life Sci 2020; 263:118524. [PMID: 33011218 DOI: 10.1016/j.lfs.2020.118524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 02/02/2023]
Abstract
AIM Sleep deprivation (SD) is a frequent health problem in modern society. Osthole (Ost), a natural coumarin, has antioxidant and neuroprotective properties. This study examined the functions of Ost in chronic sleep deprivation (CSD)-induced memory deficits in rats. MAIN METHODS The CSD rat model was constructed by applying Sleep Interruption Apparatus (SIA). The protective effect of Ost on memory ability of CSD rats was evaluated through behavioral tests. Modafinil (MOD) was a positive control for investigating the mechanisms underlying the actions of Ost. The oxidative stress changes in the cortex and hippocampus of the rats, histological changes in CA1 region in the hippocampus and the protein expressions of neural plasticity markers were measured. The hippocampal neurons were isolated from rats for evaluating the neuroprotective effects of Ost on glutamate-induced neuron injury in vitro. KEY FINDINGS Ost administration significantly enhanced the cognitive performance of CSD rats in the open field test, object location recognition experiment, novel object recognition experiment, and Morris water maze test. Ost could effectively normalize the levels/activities of the antioxidant enzyme system in the cortex and hippocampus. Moreover, Ost administration reversed CSD-induced abnormal state of CA1 neurocytes and the down-regulated expressions of plasticity-related genes in vivo and in vitro. Additionally, Ost also notably up-regulated the expressions of Nrf2 and HO-1 previously down-regulated in CA1 neurocytes of CSD rats and in vitro. SIGNIFICANCE Our findings showed that Ost alleviated CSD-induced cognitive deficits, and the activation of the Nrf2/HO-1 pathway might be involved in the neuroprotective action of Ost.
Collapse
|
8
|
Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020; 10:20190092. [PMID: 32382403 PMCID: PMC7202382 DOI: 10.1098/rsfs.2019.0092] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sleep is highly conserved across evolution, suggesting vital biological functions that are yet to be fully understood. Animals and humans experiencing partial sleep restriction usually exhibit detrimental physiological responses, while total and prolonged sleep loss could lead to death. The perturbation of sleep homeostasis is usually accompanied by an increase in hypothalamic–pituitary–adrenal (HPA) axis activity, leading to a rise in circulating levels of stress hormones (e.g. cortisol in humans, corticosterone in rodents). Such hormones follow a circadian release pattern under undisturbed conditions and participate in the regulation of sleep. The investigation of the consequences of sleep deprivation, from molecular changes to behavioural alterations, has been used to study the fundamental functions of sleep. However, the reciprocal relationship between sleep and the activity of the HPA axis is problematic when investigating sleep using traditional sleep-deprivation protocols that can induce stress per se. This is especially true in studies using rodents in which sleep deprivation is achieved by exogenous, and potentially stressful, sensory–motor stimulations that can undoubtedly confuse their conclusions. While more research is needed to explore the mechanisms underlying sleep loss and health, avoiding stress as a confounding factor in sleep-deprivation studies is therefore crucial. This review examines the evidence of the intricate links between sleep and stress in the context of experimental sleep deprivation, and proposes a more sophisticated research framework for sleep-deprivation procedures that could benefit from recent progress in biotechnological tools for precise neuromodulation, such as chemogenetics and optogenetics, as well as improved automated real-time sleep-scoring algorithms.
Collapse
Affiliation(s)
- Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK.,Centre for Neurotechnology, Imperial College London, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK.,Centre for Neurotechnology, Imperial College London, London, UK
| |
Collapse
|
9
|
Zhang L, Shao Y, Liu Z, Li C, Chen Y, Zhou Q. Decreased Information Replacement of Working Memory After Sleep Deprivation: Evidence From an Event-Related Potential Study. Front Neurosci 2019; 13:408. [PMID: 31105518 PMCID: PMC6499035 DOI: 10.3389/fnins.2019.00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 12/25/2022] Open
Abstract
Working memory (WM) components are altered after total sleep deprivation (TSD), both with respect to information replacement and result judgment. However, the electrophysiological mechanisms of WM alterations following sleep restriction remain largely unknown. To identify such mechanisms, event-related potentials were recorded during the n-back WM task, before and after 36 h sleep deprivation. Thirty-one young volunteers participated in this study and performed a two-back WM task with simultaneous electroencephalography (EEG) recording before and after TSD and after 8 h time in bed for recovery (TIBR). Repeated measures analysis of variance revealed that, compared to resting wakefulness, sleep deprivation induced a decrease in the P200 amplitude and induced longer reaction times. ERP-component scalp topographies results indicated that such decrease primarily occurred in the frontal cortex. The N200 and P300 amplitudes also decreased after TSD. Our results suggest that decreased information replacement of WM occurs after 36 h of TSD and that 8 h TIBR after a long period of TSD leads to partial restoration of WM functions. The present findings represent the EEG profile of WM during mental fatigue.
Collapse
Affiliation(s)
- Liwei Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yongcong Shao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Cognitive and Mental Health Research Center, Beijing Institute of Basic Medical Science, Beijing, China
| | - Zhongqi Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Chenming Li
- The Quartermaster Research Institute of Engineering and Technology, Beijing, China
| | - Yuhong Chen
- The Quartermaster Research Institute of Engineering and Technology, Beijing, China
| | - Qianxiang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
10
|
Cao Y, Li Q, Liu L, Wu H, Huang F, Wang C, Lan Y, Zheng F, Xing F, Zhou Q, Li Q, Shi H, Zhang B, Wang Z, Wu X. Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. Br J Pharmacol 2019; 176:1282-1297. [PMID: 30767208 DOI: 10.1111/bph.14626] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/05/2018] [Accepted: 01/27/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Sleep deprivation compromises learning and memory in both humans and animals, and can be reversed by administration of modafinil, a drug promoting wakefulness. Dysfunctional autophagy increases activation of apoptotic cascades, ultimately leading to increased neuronal death, which can be alleviated by autophagy inhibitors. This study aimed to investigate the alleviative effect and mechanism of modafinil on the excessive autophagy occurring in the hippocampus of mice with deficiency of learning and memory induced by sleep deprivation. EXPERIMENTAL APPROACH The Morris water maze was used to assess the effects of modafinil on male C57BL/6Slac mice after 48-hr sleep deprivation. The HT-22 hippocampal neuronal cell line was also used. Nissl staining, transmission electron microscope, immunofluorescence, Western blot, transient transfection, and autophagy inducer were used to study the effect and mechanism of modafinil on hippocampal neurons with excessive autophagy and apoptosis. KEY RESULTS Modafinil improved learning and memory in sleep-deprived mice, associated with the inhibition of excessive autophage and apoptosis and an enhanced activation of the PI3K/Akt/mTOR/P70S6K signalling pathway in hippocampal neurons. These effects of modafinil were abolished by rapamycin. In addition, modafinil suppressed the aberrant autophagy and apoptosis induced by rapamycin and reactivated PI3K/Akt/mTOR/P70S6K signals in HT-22 cells. CONCLUSIONS AND IMPLICATIONS These results suggested that modafinil alleviated impaired learning and memory of sleep-deprived mice potentially by suppressing excessive autophagy and apoptosis of hippocampal neurons. This novel mechanism may add to our knowledge of modafinil in the clinical treatment of impaired memory caused by sleep loss.
Collapse
Affiliation(s)
- Yin Cao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Liu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyi Lan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Zheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Faping Xing
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Beibei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation. J Ginseng Res 2019; 44:442-452. [PMID: 32372866 PMCID: PMC7195596 DOI: 10.1016/j.jgr.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
Backgroud Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem–leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.
Collapse
|
12
|
Alzoubi KH, Rababa'h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 2017; 131:176-182. [PMID: 28433816 DOI: 10.1016/j.brainresbull.2017.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
Abstract
Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Amani Owaisi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan; Faculty of Applied Medical Sciences , Taibah University , Medina , Saudi Arabia
| |
Collapse
|
13
|
The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model. Neurobiol Learn Mem 2016; 133:53-60. [DOI: 10.1016/j.nlm.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/24/2023]
|
14
|
Tempol prevents chronic sleep-deprivation induced memory impairment. Brain Res Bull 2016; 120:144-50. [DOI: 10.1016/j.brainresbull.2015.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
15
|
Shanmugasundaram B, Korz V, Fendt M, Braun K, Lubec G. Differential effects of wake promoting drug modafinil in aversive learning paradigms. Front Behav Neurosci 2015; 9:220. [PMID: 26347629 PMCID: PMC4541287 DOI: 10.3389/fnbeh.2015.00220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
Modafinil (MO) an inhibitor of the dopamine transporter was initially approved to treat narcolepsy, a sleep related disorder in humans. One interesting “side-effect” of this drug, which emerged from preclinical and clinical studies, is the facilitation of cognitive performance. So far, this was primarily shown in appetitive learning paradigms, but it is yet unclear whether MO exerts a more general cognitive enhancement effect. Thus, the aim of the present study in rats was to extend these findings by testing the effects of MO in two aversive paradigms, Pavlovian fear conditioning (FC) and the operant two-way active avoidance (TWA) learning paradigms. We discovered a differential, task-dependent effect of MO. In the FC paradigm MO treated rats showed a dose-dependent enhancement of fear memory compared to vehicle treated rats, indicated by increased context-related freezing. Cue related fear memory remained unaffected. In the TWA paradigm MO induced a significant decrease of avoidance responses compared to vehicle treated animals, while the number of escape reactions during the acquisition of the TWA task remained unaffected. These findings expand the knowledge in the regulation of cognitive abilities and may contribute to the understanding of the contraindicative effects of MO in anxiety related mental disorders.
Collapse
Affiliation(s)
| | - Volker Korz
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, and Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria
| |
Collapse
|
16
|
Exploring the effect of vitamin C on sleep deprivation induced memory impairment. Brain Res Bull 2015; 113:41-7. [DOI: 10.1016/j.brainresbull.2015.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 01/27/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022]
|
17
|
Xie M, Yan J, He C, Yang L, Tan G, Li C, Hu Z, Wang J. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus. Behav Brain Res 2015; 286:64-70. [PMID: 25732956 DOI: 10.1016/j.bbr.2015.02.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 11/29/2022]
Abstract
Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment.
Collapse
Affiliation(s)
- Meilan Xie
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Gang Tan
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Chao Li
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China.
| | - Jiali Wang
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
18
|
Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013; 7:106. [PMID: 24379759 PMCID: PMC3861693 DOI: 10.3389/fnsys.2013.00106] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.
Collapse
Affiliation(s)
- Valeria Colavito
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Paolo F Fabene
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | | | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle Brunoy, France
| | - Yves Lamberty
- Neuroscience Therapeutic Area, UCB Pharma s.a. Braine l'Alleud, Belgium
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Giuseppe Bertini
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| |
Collapse
|
19
|
Garcia VA, Hirotsu C, Matos G, Alvarenga T, Pires GN, Kapczinski F, Schröder N, Tufik S, Andersen ML. Modafinil ameliorates cognitive deficits induced by maternal separation and sleep deprivation. Behav Brain Res 2013; 253:274-9. [DOI: 10.1016/j.bbr.2013.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
20
|
Garcia VA, Souza de Freitas B, Busato SB, D'avila Portal BC, Piazza FC, Schröder N. Differential effects of modafinil on memory in naïve and memory-impaired rats. Neuropharmacology 2013; 75:304-11. [PMID: 23958446 DOI: 10.1016/j.neuropharm.2013.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Modafinil is a wake-promoting drug and has been approved for the treatment of excessive daytime sleepiness in narcolepsy and obstructive sleep apnea. Modafinil was shown to improve learning and memory in rodents, and to reverse memory deficits induced by sleep deprivation or stress. However, depending on the memory paradigm used, modafinil might also impair memory. We aimed to investigate the effects of modafinil on memory consolidation and retrieval for object recognition and inhibitory avoidance in naïve adult rats. We also investigated whether acute or chronic administration of modafinil would reverse memory deficits induced by iron overload, a model of memory impairment related to neurodegenerative disorders. Adult naïve rats received modafinil (0.0, 0.75, 7.5 or 75 mg/kg) either immediately after training or 1 h prior to testing in object recognition or inhibitory avoidance. Iron-treated rats received modafinil immediately after training in object recognition. In order to investigate the effects of chronic modafinil, iron-treated rats received daily injections of modafinil for 17 days, and 24 h later they were trained in object recognition or inhibitory avoidance. Acute modafinil does not affect memory consolidation or retrieval in naive rats. A single injection of modafinil at the highest dose was able to recover recognition memory in iron-treated rats. Chronic modafinil completely recovered iron-induced recognition memory and emotional memory deficits. Additional preclinical and clinical studies are necessary in order to support the applicability of modafinil in recovering memory impairment associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa Athaíde Garcia
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil; National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Stefano Boemler Busato
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Bernardo Chaves D'avila Portal
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Francisco Correa Piazza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil; National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Alzoubi KH, Khabour OF, Tashtoush NH, Al-Azzam SI, Mhaidat NM. Evaluation of the effect of pentoxifylline on sleep-deprivation induced memory impairment. Hippocampus 2013; 23:812-9. [PMID: 23592546 DOI: 10.1002/hipo.22135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2013] [Indexed: 01/06/2023]
Abstract
In this study, we examined the ability of Pentoxifylline (PTX) to prevent sleep deprivation induced memory impairment probably through decreasing oxidative stress. Sleep deprivation was chronically induced 8 h/day for 6 weeks in rats using modified multiple platform model. Concurrently, PTX (100 mg/kg) was administered to animals on daily basis. After 6 weeks of treatment, behavioral studies were conducted to test the spatial learning and memory using the Radial Arm Water Maze. Additionally, the hippocampus was dissected; and levels/activities of antioxidant defense biomarkers glutathione reduced (GSH), glutathione oxidized (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were assessed. The results show that chronic sleep deprivation impaired short- and long-term memories, which was prevented by chronic treatment with PTX. Additionally, PTX normalized sleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio (P < 0.05), and activities of GPx, catalase, and SOD (P < 0.05). In conclusion, chronic sleep deprivation induces memory impairment, and treatment with PTX prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
22
|
Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 2013; 237:15-22. [DOI: 10.1016/j.bbr.2012.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|
23
|
Abstract
AbstractMemory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.
Collapse
|
24
|
Fernandes-Santos L, Patti CL, Zanin KA, Fernandes HA, Tufik S, Andersen ML, Frussa-Filho R. Sleep deprivation impairs emotional memory retrieval in mice: influence of sex. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:216-22. [PMID: 22521334 DOI: 10.1016/j.pnpbp.2012.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
Abstract
The deleterious effects of paradoxical sleep deprivation on memory processes are well documented. However, non-selective sleep deprivation occurs more commonly in modern society and thus represents a better translational model. We have recently reported that acute total sleep deprivation (TSD) for 6 h immediately before testing impaired performance of male mice in the plus-maze discriminative avoidance task (PM-DAT) and in the passive avoidance task (PAT). In order to extend these findings to females, we examined the effect of (pre-test) TSD on the retrieval of different memory tasks in both male and female mice. Animals were tested using 3 distinct memory models: 1) conditioning fear context (CFC), 2) PAT and 3) PM-DAT. In all experiments, animals were totally sleep-deprived by the gentle interference method for 6h immediately before being tested. In the CFC task and the PAT, TSD induced memory impairment regardless of sex. In PM-DAT, the memory impairing effects of TSD were greater in females. Collectively, our results confirm the impairing effect of TSD on emotional memory retrieval and demonstrate that it can be higher in female mice depending on the memory task evaluated.
Collapse
Affiliation(s)
- Luciano Fernandes-Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Napoleão de Barros, 925, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Fernandes HA, Zanin KA, Patti CL, Wuo-Silva R, Carvalho RC, Fernandes-Santos L, Bittencourt LRA, Tufik S, Frussa-Filho R. Inhibitory effects of modafinil on emotional memory in mice. Neuropharmacology 2012; 64:365-70. [PMID: 22771974 DOI: 10.1016/j.neuropharm.2012.06.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/05/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022]
Abstract
Modafinil (MOD), a psychostimulant used to treat narcolepsy, excessive daytime sleepiness, and sleepiness due to obstructive sleep apnea, appears to promote a possible facilitatory effect on cognitive function. In the present study, we investigated the effects of the acute administration of MOD on the different steps of emotional memory formation and usage (acquisition, consolidation and retrieval) as well as the possible participation of the state-dependency phenomenon on the cognitive effects of this compound. Mice were acutely treated with 32, 64 or 128 mg/kg MOD before training or testing or immediately after training and were subjected to the plus-maze discriminative avoidance task. The results showed that although pre-training MOD administration did not exert any effects on learning, the doses of 32 or 64 mg/kg induced emotional memory deficits during testing. Still, the post-training acute administration of the higher doses of MOD (64 and 128 mg/kg) impaired associative memory consolidation. When the drug was administered pre-test, only the 32 mg/kg dose impaired the task retrieval. Importantly, the cognitive impairing effects induced by 32 mg/kg MOD were not related to the phenomenon of state-dependency. In all, our findings provide pre-clinical evidence of potential emotional memory amnesia induced by MOD. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Helaine A Fernandes
- Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros 925, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 2011; 499:28-31. [PMID: 21624432 DOI: 10.1016/j.neulet.2011.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
27
|
Béracochéa D, Tronche C, Coutan M, Dorey R, Chauveau F, Piérard C. Interaction between Diazepam and Hippocampal Corticosterone after Acute Stress: Impact on Memory in Middle-Aged Mice. Front Behav Neurosci 2011; 5:14. [PMID: 21516247 PMCID: PMC3079857 DOI: 10.3389/fnbeh.2011.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/08/2011] [Indexed: 01/12/2023] Open
Abstract
Benzodiazepines (BDZ) are widely prescribed in the treatment of anxiety disorders associated to aging. Interestingly, whereas a reciprocal interaction between the GABAergic system and HPA axis has been evidenced, there is to our knowledge no direct evaluation of the impact of BDZ on both hippocampus (HPC) corticosterone concentrations and HPC-dependent memory in stressed middle-aged subjects. We showed previously that an acute stress induced in middle-aged mice severe memory impairments in a hippocampus-dependent task, and increased in parallel hippocampus corticosterone concentrations, as compared to non-stressed middle-aged controls (Tronche et al., 2010). Based on these findings, the aims of the present study were to evidence the impact of diazepam (a positive allosteric modulator of the GABA-A receptor) on HPC glucocorticoids concentrations and in parallel on HPC-dependent memory in acutely stressed middle-aged mice. Microdialysis experiments showed an interaction between diazepam doses and corticosterone concentrations into the HPC. From 0.25 to 0.5 mg/kg, diazepam dose-dependently reduces intra-HPC corticosterone concentrations and in parallel, dose-dependently increased hippocampal-dependent memory performance. In contrast, the highest (1.0 mg/kg) diazepam dose induces a reduction in HPC corticosterone concentration, which was of greater magnitude as compared to the two other diazepam doses, but however decreased the hippocampal-dependent memory performance. In summary, our study provides first evidence that diazepam restores in stressed middle-aged animals the hippocampus-dependent response, in relation with HPC corticosterone concentrations. Overall, our data illustrate how stress and benzodiazepines could modulate cognitive functions depending on hippocampus activity.
Collapse
Affiliation(s)
- Daniel Béracochéa
- UMR-CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Universités de Bordeaux Talence, France
| | | | | | | | | | | |
Collapse
|