1
|
Al-Ali AM, Young AMJ. Disruption of latent inhibition by subchronic phencyclidine pretreatment in rats. Behav Brain Res 2019; 368:111901. [PMID: 30981736 DOI: 10.1016/j.bbr.2019.111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
Repeated subchronic treatment with the NMDA-receptor antagonist, phencyclidine, causes behavioural changes in rats, which resemble cognitive and negative symptoms of schizophrenia. However, its effects on behaviours modelling positive symptoms are less clear. This study investigated whether subchronic phencyclidine pretreatment affected latent inhibition: impaired conditioning following repeated preexposure of the to-be-conditioned stimulus. Female Lister-hooded rats were pretreated with phencyclidine or saline twice/day for 5 days, then remained drug-free for 10 days before latent inhibition testing. Saline pretreated animals showed latent inhibition, as expected. However, phencyclidine pretreated animals showed no latent inhibition: the effect of preexposure was attenuated, with no change in basic learning. Thus subchronic phencyclidine pretreatment does disrupt latent inhibition, and, importantly, this occurs after withdrawal from the drug, implicating changes in brain function enduring well beyond the time that the drug is present in the brain. In a separate task, discrimination of a novel object was significantly impaired by phencyclidine pretreatment confirming that five days of subchronic pretreatment was sufficient to invoke behavioural impairment previously reported after seven days pretreatment.
Collapse
Affiliation(s)
- Asmaa M Al-Ali
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
2
|
Tang S, Graham BM. Reproductive experience alters the involvement of N-methyl-D-aspartate receptors in fear extinction, but not fear conditioning, in female Sprague Dawley rats. Psychopharmacology (Berl) 2019; 236:251-264. [PMID: 29959460 DOI: 10.1007/s00213-018-4956-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023]
Abstract
Recently, evidence has emerged showing that the behavioural and hormonal features of fear extinction are altered as a result of reproductive experience in both rats and humans. The current set of experiments sought to determine whether reproductive experience also alters the molecular features of fear extinction. In adult male rats, it has been widely demonstrated that the activation of N-methyl-D-aspartate receptors (NMDAR) is essential for fear extinction. We therefore compared the involvement of NMDAR in fear extinction between nulliparous (virgin) and primiparous (reproductively experienced) female rats. Nulliparous and primiparous females received systemic administrations of either MK-801 (a non-competitive NMDAR antagonist) or saline prior to extinction training. MK-801 was found to impair extinction recall in nulliparous females, but not primiparous females. When the same dose of MK-801 was administered prior to conditioning, both groups of rats showed impaired recall of conditioning the following day. The results of these experiments indicate that the extinction, but not the acquisition of fear, may become NMDAR-independent following reproductive experience.
Collapse
Affiliation(s)
- Samantha Tang
- School of Psychology, UNSW, Sydney, NSW, 2052, Australia.
| | | |
Collapse
|
3
|
Chaaya N, Jacques A, Belmer A, Richard DJ, Bartlett SE, Battle AR, Johnson LR. Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience 2018; 398:231-251. [PMID: 30552931 DOI: 10.1016/j.neuroscience.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
Debilitating and persistent fear memories can rapidly form in humans following exposure to traumatic events. Fear memories can also be generated and studied in animals via Pavlovian fear conditioning. The current study was designed to evaluate basolateral amygdala complex (BLC) involvement following the formation of different fear memories (two contextual fear memories and one adjusted auditory fear memory). Fear memories were created in the same context with five 1.0 mA (0.50 s) foot-shocks and, where necessary, five auditory tones (5 kHz, 75 dB, 20 s). The adjusted auditory fear conditioning protocol was employed to remove background contextual fear and produce isolated auditory fear memories. Immunofluorescent labeling was utilized to identify neurons expressing immediate early genes (IEGs). We found the two contextual fear conditioning (CFC) procedures to produce similar levels of fear-related freezing to context. Contextual fear memories produced increases in BLC IEG expression with distinct and separate patterns of expression. These data suggest contextual fear memories created in slightly altered contexts, can produce unique patterns of amygdala activation. The adjusted auditory fear conditioning procedure produced memories to a tone, but not to a context. This group, where no contextual fear was present, had a significant reduction in BLC IEG expression. These data suggest background contextual fear memories, created in standard auditory fear conditioning protocols, contribute significantly to increases in amygdala activation.
Collapse
Affiliation(s)
- N Chaaya
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - A Jacques
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - A Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - D J Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Australia
| | - S E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - A R Battle
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Australia; The University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia
| | - L R Johnson
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; Center for the Study of Traumatic Stress, Department of Psychiatry, USU School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
4
|
Abstract
Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|