1
|
Diaz MR, Barney TM, Marsland P, Deak T. Age- and cytokine-dependent modulation of GABAergic transmission within the basolateral amygdala of male Sprague Dawley rats. Neuropharmacology 2025; 267:110304. [PMID: 39827996 DOI: 10.1016/j.neuropharm.2025.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure. However, neither the effect of IL-6 or IL-1β on synaptic function within the amygdala nor the impact of acute intoxication and withdrawal on these cytokines' function are known. To test this, we used whole-cell patch-clamp electrophysiology to assess the effects of IL-6 and IL-1β on GABA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in BLA pyramidal neurons from male rats in early adolescence (P28-40) or adulthood (P70+). These experiments were done in naïve, intoxicated (3-4 h following an intraperitoneal injection of 3.5 g/kg ethanol), and during acute hangover (11-18 h post ethanol injection). In naïve males, we found that IL-6 (10 ng/ml) significantly enhanced sIPSC amplitude only in adults, with no apparent effect in adolescents; this effect of IL-6 in adults was not different during intoxication. Conversely, IL-1β (10 ng/ml) did not alter sIPSC frequency in any group (naïve or hangover adolescents or adults). Unlike our previous work in adult rats, here we found that contextual fear conditioning was not altered in adolescents when conditioned during acute hangover. Together, these observations suggest that IL-6, but not IL-1β, regulation of BLA GABA transmission emerges as a function of age, but is not affected by acute ethanol exposure or hangover for adolescents or adults. Importantly, these findings provide additional evidence to support functional immaturity of the neuroimmune system in adolescence.
Collapse
Affiliation(s)
- Marvin R Diaz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
2
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
3
|
Barney TM, Vore AS, Trapp SL, Finkenberg CL, Pugliesi DR, Schmalzle MM, Evans SH, Varlinskaya EI, Deak T. Circulating corticosterone levels mediate the relationship between acute ethanol intoxication and markers of NF-κB activation in male rats. Neuropharmacology 2022; 210:109044. [PMID: 35341791 DOI: 10.1016/j.neuropharm.2022.109044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Binge drinking is a harmful pattern of alcohol use that is associated with a number of serious health problems. Of particular interest are the rapid alterations in neuroimmune gene expression and the concurrent activation of the hypothalamic-pituitary-adrenal (HPA) axis activation associated with high intensity drinking. Using a rat model of acute binge-like ethanol exposure, the present studies were designed to assess the role of corticosterone (CORT) in ethanol-induced neuroimmune gene expression changes, particularly those associated with the NFκB signaling pathway, including rapid induction of IL-6 and IκBα, and suppression of IL-1β and TNFα gene expression evident after administration of moderate to high doses of ethanol (1.5-3.5 g/kg ip) during intoxication (3 h post-injection). Experiment 1 tested whether inhibition of CORT synthesis with metyrapone and aminoglutethimide (100 mg/kg each, sc) would block ethanol-induced changes in neuroimmune gene expression. Results indicated that rapid alterations in IκBα, IL-1β, and TNFα expression were completely blocked by pretreatment with the glucocorticoid synthesis inhibitors, an effect that was reinstated by co-administration of exogenous CORT (3.75 mg/kg) in Experiment 2. Experiment 3 assessed whether these rapid alterations in neuroimmune gene expression would be evident when rats were challenged with a subthreshold dose of ethanol (1.5 g/kg) in combination with 2.5 mg/kg CORT, which showed limited evidence for additive effects of low-dose CORT combined with a moderate dose of ethanol. Acute inhibition of mineralocorticoid (spironolactone) or glucocorticoid (mifepristone) receptors, alone (Experiment 4) or combined (Experiment 5) had no effect on ethanol-induced changes in neuroimmune gene expression, presumably due to poor CNS penetrance of these drugs. Finally, Experiments 6 and 7 showed that dexamethasone (subcutaneous; a GR agonist) recapitulated effects of ethanol. Overall, we conclude that ethanol-induced CORT synthesis and release is responsible for suppression of IL-1β, TNFα, and induction of IκBα in the hippocampus through GR signaling. Interventions designed to curb these changes may reduce drinking, and subdue detrimental neuroimmune activation induced by ethanol.
Collapse
Affiliation(s)
- Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Andrew S Vore
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Sarah L Trapp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Cristal L Finkenberg
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Dominique R Pugliesi
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Megha M Schmalzle
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Shani H Evans
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
4
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
5
|
Marsland P, Parrella A, Vore AS, Barney TM, Varlinskaya EI, Deak T. Male, but not female, Sprague Dawley rats display enhanced fear learning following acute ethanol withdrawal (hangover). Pharmacol Biochem Behav 2021; 208:173229. [PMID: 34246729 PMCID: PMC9204503 DOI: 10.1016/j.pbb.2021.173229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
The present studies investigated the effects of withdrawal from a single binge-like dose of ethanol (hangover) on fear conditioning in male and female Sprague Dawley rats. In Experiment 1, males and females were given 0 or 3.5 g/kg ethanol intraperitoneally (i.p.) and then conditioned to contextual fear 24 h post injection. Withdrawal from acute ethanol enhanced expression of the conditioned freezing response in males, but not in females. Experiment 2 demonstrated that in males, withdrawal from acute ethanol administered 24 h prior to conditioning enhanced contextual fear conditioning, but not auditory-cued fear conditioning. In Experiment 3, male and female rats were given 3.5 g/kg ethanol, and blood ethanol concentrations (BECs) were assessed at various time points for determination of ethanol clearance. Female rats cleared ethanol at a higher rate than males, with 10 h required for females and 14 for males to eliminate ethanol from their systems. Because females cleared ethanol faster than males, in Experiment 4, females were conditioned 18 h after ethanol administration to keep the interval between ethanol clearance and fear conditioning similar to that of males. Withdrawal from acute ethanol given 18 h prior to conditioning did not affect both contextual and auditory-cued fear conditioning in females. In summary, these results highlight sex differences in the impact of withdrawal from acute ethanol (hangover) on fear learning; suggesting that males are more sensitive to hangover-associated enhancement of negative affect than females.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Allissa Parrella
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Thaddeus M Barney
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
6
|
Gano A, Prestia L, Middleton FA, Youngentob SL, Ignacio C, Deak T. Gene expression profiling reveals a lingering effect of prenatal alcohol exposure on inflammatory-related genes during adolescence and adulthood. Cytokine 2020; 133:155126. [PMID: 32505093 DOI: 10.1016/j.cyto.2020.155126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Prenatal Alcohol Exposure (PAE) exerts devastating effects on the Central Nervous System (CNS), which vary as a function of both ethanol load and gestational age of exposure. A growing body of evidence suggests that alcohol exposure profoundly impacts a wide range of cytokines and other inflammation-related genes in the CNS. The olfactory system serves as a critical interface between infectious/inflammatory signals and other aspects of CNS function, and demonstrates long-lasting plasticity in response to alcohol exposure. We therefore utilized transcriptome profiling to identify gene expression patterns for immune-related gene families in the olfactory bulb of Long Evans rats. Pregnant dams received either an ad libitum liquid diet containing 35% daily calories from ethanol (ET), a pair-fed diet (PF) matched for caloric content, or free choice (FCL) access to the liquid diet and water from Gestational Day (GD) 11-20. Offspring were fostered to dams fed the FCL diet, weaned on P21, and then housed with same-sex littermates until mid-adolescence (P40) or young adulthood (P90). At the target ages of P40 or P90, offspring were euthanized via brief CO2 exposure and brains/blood were collected. Gene expression analysis was performed using a Rat Gene 1.0 ST Array (Affymetrix), and preliminary analyses focused on two moderately overlapping gene clusters, including all immune-related genes and those related to neuroinflammation. A total of 146 genes were significantly affected by prenatal Diet condition, whereas the factor of Age (P40 vs P90) revealed 998 genes significantly changed, and the interaction between Diet and Age yielded 162 significant genes. From this dataset, we applied a threshold of 1.3-fold change (30% increase or decrease in expression) for inclusion in later analyses. Findings indicated that in adolescents, few genes were altered by PAE, whereas adults displayed an increase of a wide range of gene upregulation as a result of PAE. Pathway analysis predicted an increase in Nf-κB activation in adolescence and a decrease in adulthood due to prenatal ethanol exposure, indicating age-specific and long-lasting alterations to immune signaling. These data may provide important insight into the relationship between immune-related signaling cascades and long-term changes in olfactory bulb function after PAE.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | - Laura Prestia
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven L Youngentob
- Developmental Exposure Alcohol Research Center (DEARC), USA; University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Cherry Ignacio
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
7
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Barney TM, Vore AS, Gano A, Mondello JE, Deak T. The influence of central interleukin-6 on behavioral changes associated with acute alcohol intoxication in adult male rats. Alcohol 2019; 79:37-45. [PMID: 30472309 DOI: 10.1016/j.alcohol.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated brain cytokine fluctuations associated with acute ethanol intoxication (increased IL-6) and withdrawal (increased IL-1β and TNFα). The purpose of the present studies was to examine the potential functional role of increased central interleukin-6 (IL-6). We utilized two tests of ethanol sensitivity to establish a potential role for IL-6 after high (3.5-4.0 g/kg, intraperitoneally [i.p.]) or moderate (2.0 g/kg, i.p.) doses of ethanol: loss of righting reflex (LORR) and conditioned taste aversion (CTA), respectively. Briefly, guide cannulae were implanted into the third ventricle of adult male Sprague-Dawley rats. In the first experiments, rats were infused with 25, 50, 100, or 200 ng of IL-6; or 0.3, 3.0, or 9.0 μg of the JAK/STAT inhibitor AG490 30 min prior to a high-dose ethanol challenge. Although sleep time was not affected by exogenous IL-6, infusion of AG490 increased latency to lose the righting reflex relative to vehicle-infused rats. Next, we assessed whether IL-6 was sufficient to produce a CTA. Moderately water-deprived rats received intracerebroventricular (i.c.v.) infusions of 25, 50, or 100 ng IL-6 immediately after 60-min access to 5% sucrose solution. Forty-eight hours later, rats were returned to the context and given 60-min access to sucrose solution. IL-6 infusion had no significant effect on sucrose intake when all rats were considered together. However, a median split revealed that low sucrose-consuming rats significantly increased their drinking on test day, an effect that was not seen in rats that received 50 or 100 ng of IL-6. In the last study, AG490 had no effect on ethanol-induced CTA (2 g/kg). Overall, these studies suggest that IL-6 had only a minor influence on ethanol-induced behavioral changes, yet phenotypic differences in sensitivity to IL-6 were apparent. These studies are among the first to examine a potential functional role for IL-6 in ethanol-related behaviors, and may have important implications for understanding the relationship between acute ethanol intoxication and its associated behavioral alterations.
Collapse
|
9
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
10
|
Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2019; 5:125-146. [PMID: 31312635 PMCID: PMC6597912 DOI: 10.1159/000499621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
There is tremendous interest in the role of the neuroimmune system and inflammatory processes in substance use disorders (SUDs). Imaging biomarkers of the neuroimmune system in vivo provide a vital translational bridge between preclinical and clinical research. Herein, we examine two imaging techniques that measure putative indices of the neuroimmune system and review their application among SUDs. Positron emission tomography (PET) imaging of 18 kDa translocator protein availability is a marker associated with microglia. Proton magnetic resonance spectroscopy quantification of myo-inositol levels is a putative glial marker found in astrocytes. Neuroinflammatory responses are initiated and maintained by microglia and astrocytes, and thus represent important imaging markers. The goal of this review is to summarize neuroimaging findings from the substance use literature that report data using these markers and discuss possible mechanisms of action. The extant literature indicates abused substances exert diverse and complex neuroimmune effects. Moreover, drug effects may change across addiction stages, i.e. the neuroimmune effects of acute drug administration may differ from chronic use. This burgeoning field has considerable potential to improve our understanding and treatment of SUDs. Future research is needed to determine how targeting the neuroimmune system may improve treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Kelly P. Cosgrove
- Departments of Psychiatry, and of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Doremus-Fitzwater TL, Paniccia JE, Gano A, Vore A, Deak T. Differential effects of acute versus chronic stress on ethanol sensitivity: Evidence for interactions on both behavioral and neuroimmune outcomes. Brain Behav Immun 2018; 70:141-156. [PMID: 29458194 PMCID: PMC5953812 DOI: 10.1016/j.bbi.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023] Open
Abstract
Acute alcohol intoxication induces significant alterations in brain cytokines. Since stress challenges also profoundly impact central cytokine expression, these experiments examined the influence of acute and chronic stress on ethanol-induced brain cytokine responses. In Experiment 1, adult male rats were exposed to acute footshock. After a post-stress recovery interval of 0, 2, 4, or 24 h, rats were administered ethanol (4 g/kg; intragastric), with trunk blood and brains collected 3 h later. In non-stressed controls, acute ethanol increased expression of Il-6 and IκBα in the hippocampus. In contrast, rats exposed to footshock 24 h prior to ethanol demonstrated potentiation of hippocampal Il-6 and IκBα expression relative to ethanol-exposed non-stressed controls. Experiment 2 subsequently examined the effects of chronic stress on ethanol-related cytokine expression. Following a novel chronic escalating stress procedure, rats were intubated with ethanol. As expected, acute ethanol increased Il-6 expression in all structures examined, yet the Il-6 response was attenuated exclusively in the hippocampus in chronically stressed rats. Later experiments determined that neither acute nor chronic stress affected ethanol pharmacokinetics. When ethanol hypnosis was examined, however, rats exposed to chronic stress awoke at significantly lower blood ethanol levels compared to acutely stressed rats, despite similar durations of ethanol-induced sedation. These data indicate that chronic stress may increase sensitivity to ethanol hypnosis. Together, these experiments demonstrate an intriguing interaction between recent stress history and ethanol-induced increases in hippocampal Il-6, and may provide insight into novel pharmacotherapeutic targets for prevention and treatment of alcohol-related health outcomes based on stress susceptibility.
Collapse
Affiliation(s)
| | - Jacqueline E. Paniccia
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Andrew Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
12
|
Piasecki TM, Trela CJ, Mermelstein RJ. Hangover Symptoms, Heavy Episodic Drinking, and Depression in Young Adults: A Cross-Lagged Analysis. J Stud Alcohol Drugs 2017; 78:580-587. [PMID: 28728640 DOI: 10.15288/jsad.2017.78.580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The objective of this study was to examine associations between symptoms of alcohol hangover and depression, both cross-sectionally and prospectively. METHOD Data were from a survey of young adults (N = 986, 60% female) initially recruited as part of an observational study of youth smoking. Participants reported past-year hangover symptoms, past-year frequency of heavy episodic drinking (HED), and past-week depression symptoms on two occasions separated by 1 year. Path analysis was used to evaluate prospective, directional associations linking symptoms of depression and hangover after taking into account their stabilities and cross-sectional associations. Individual differences in HED frequency were accounted for to permit interpretation of residual hangover score variance in terms of susceptibility to hangover effects. RESULTS Past-week depression and past-year hangover symptoms were associated at Time 1. Path analysis indicated that Time 1 depression symptoms were associated with elevated hangover symptoms a year later at Time 2. In contrast, Time 1 hangover symptoms did not predict future depression. CONCLUSIONS Depression symptoms are associated with current and future hangover susceptibility. Hangover and depression overlap symptomatically and are empirically associated with one another, suggesting the possibility that common underlying causal mechanisms may contribute to both phenomena.
Collapse
Affiliation(s)
- Thomas M Piasecki
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Constantine J Trela
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Robin J Mermelstein
- Department of Psychology and Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Doremus-Fitzwater TL, Buck HM, Bordner K, Richey L, Jones ME, Deak T. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure. Alcohol Clin Exp Res 2015; 38:2186-98. [PMID: 25156612 DOI: 10.1111/acer.12481] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence has emerged demonstrating that ethanol (EtOH) influences cytokine expression within the central nervous system, although most studies have examined long-term exposure. Thus, the cytokine response to an acute EtOH challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. METHODS Rats pups were injected intraperitoneally (i.p.) with 2-g/kg EtOH, and IL-1 mRNA and protein were assessed 0, 60, 120, 180, and 240 minutes post injection (Experiment 1). In Experiments 2 to 5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hours after 4-g/kg EtOH), as well as withdrawal (18 hours post injection), after i.p. or intragastric (i.g.) EtOH administration. RESULTS Early in ontogeny, acute EtOH significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. EtOH exposure (4 g/kg). Although cytokine- and region-dependent central IL-6 expression was generally increased and tumor necrosis factor alpha decreased during intoxication, IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. EtOH elevated expression of all cytokines, with the response growing in magnitude as the time post injection increased. Following acute i.g. EtOH (4 g/kg), intoxication-related increases in IL-6 expression were again observed in the paraventricular nucleus of the hypothalamus (PVN), although to a lesser extent. Long-term, voluntary, intermittent EtOH consumption resulted in tolerance to the effects of an i.g. EtOH challenge (4 g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate EtOH intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. EtOH-induced changes in central cytokine expression. CONCLUSIONS Together, these studies provide a foundation for understanding fluctuations in central and peripheral cytokines following acute EtOH as potential contributors to the constellation of neural and behavioral alterations observed during EtOH intoxication and withdrawal.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York
| | | | | | | | | | | |
Collapse
|
14
|
Alterations in affective behavior during the time course of alcohol hangover. Behav Brain Res 2013; 253:128-38. [DOI: 10.1016/j.bbr.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 12/13/2022]
|