1
|
Ghorbanzadeh B, Azizolahi B, Behmanesh MA, Forouhar P, Foroughinia A, Nabizadeh M. The role of opioid receptors in the anti-allodynic effect of local montelukast in a rat chronic constriction injury of sciatic nerve model. Neurosci Lett 2025; 851:138165. [PMID: 39956314 DOI: 10.1016/j.neulet.2025.138165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Neuropathic pain is a debilitating and chronic condition that results from damage to the peripheral and central nervous system. The inflammatory mediators such as leukotrienes, and opioidergic pathways are involved in the neuropathic pain generation. The present study aimed to determine the effect of local montelukast and the role of opioid receptors using chronic constriction injury (CCI) of the sciatic nerve in rats. Our results showed that montelukast (1-10 mcg/paw) or morphine (1 and 10 mcg/paw) attenuated the mechanical and cold allodynia at day 7 and 14 post-CCI. The effect of montelukast was attenuated by local pre-treatment with naloxone (20 mcg/paw), and was augmented by an ineffective dose of morphine. Also, the histopathological investigation showed the peripheral anti-inflammatory effect of montelukast in the sciatic-injured paw. Moreover, spinal cord mu-opioid receptor mRNA decreased, and kappa-opioid receptor mRNA increased in rats 14 days after CCI by RT-PCR analyses. However, the administration of montelukast on days 7 and 14 after CCI reversed the observed changes in opioid receptors. Our findings suggested that local montelukast can attenuate neuropathic pain, at least in part, through the peripheral opioid receptors, peripheral anti-inflammatory, and also spinal mu- and kappa-opioid receptors. So, local montelukast could be a novel therapeutic strategy for alleviating neuropathic pain.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Acetates/therapeutic use
- Acetates/administration & dosage
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Quinolines/administration & dosage
- Male
- Rats
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Morphine/pharmacology
- Sciatic Nerve/injuries
- Sciatic Nerve/drug effects
- Receptors, Opioid/metabolism
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Leukotriene Antagonists/pharmacology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats, Sprague-Dawley
- RNA, Messenger/metabolism
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Rats, Wistar
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Behnam Azizolahi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Parsa Forouhar
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Foroughinia
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohadeseh Nabizadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran; Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
2
|
Nazir MM, Inam S, Ijaz MU, Zafar N, Yeni DK, Asad F, Farzeen I, Ashraf A. In vivo and in silico elucidation of possible potential and mechanisms involved in the analgesic action of ethanolic extract of Lavandula Stoechas. J Pharm Pharmacol 2024; 76:1178-1198. [PMID: 38984979 DOI: 10.1093/jpp/rgae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVES Our research focused on plant's ethanolic extract Lavandula stoechas flower part to investigate the potential analgesic effects and possible pathways involvements. METHODS Four experimental tests were performed on Swiss albino mice with five animals in each group at different doses (50, 100, and 200mg/kg); formalin test, tail-flick test, acetic acid-induced writhing, and hot-plate test. The opioidergic, noradrenergic, cholinergic, and K channel blockers in the analgesic actions were also carried out for the potential route involvement. KEY FINDING The percentage inhibition for abdominal writhing's and formalin activity showed a dose-dependent manner for early and late phases reducing abdominal writhing's and time period of licking, respectively. Tail immersion and hot-plate test demonstrated a substantial and dose-dependent increase in the latency time and time period of paw liking and jumping response respectively. GC-MS showed the abundantly present compounds were octadecatrienoic acid (34.35%), n-hexadecanoic acid (12.98%). In silico analyses have revealed three compounds that had good interactions with 6y3c receptor proteins, demonstrating strong binding affinities and satisfying docking parameters. CONCLUSIONS Overall, these studies showed that ethanolic extract of L. stoechas is an important medicinal plant, with both central and peripheral antinociceptive and analgesic activities supporting its traditional use for therapeutic purposes.
Collapse
Affiliation(s)
| | - Sana Inam
- Department of Pharmaceutics, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nimrah Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Derya Karatas Yeni
- Department of Microbiology, University of Necmettin Erbakan, Konya, Turkey
| | - Farkhanda Asad
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Farzeen
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Ghorbanzadeh B, Azizolahi B, Masoudipur F, Boroun A, Azizi M, Oroojan AA, Jafrasteh S. Low doses of acetaminophen produce antidepressive-like effects through the opioid system in mice. Behav Brain Res 2024; 469:115065. [PMID: 38782097 DOI: 10.1016/j.bbr.2024.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Acetaminophen (paracetamol) is one of the most popular analgesics for the management of fever and pain but few reports have investigated its antidepressant-like effect. Moreover, the role of the opioidergic pathway has been indicated in depression pathophysiology. This study aimed to examine the involvement of the opioid receptors in the antidepressant-like effect of acetaminophen after acute and sub-chronic administration using mice forced swimming test (FST). Our finding showed that administration of acetaminophen (50 and 100 mg/kg, i.p.) 30 min before the FST produced an antidepressant effect which was reduced by naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist). Moreover, we observed that acetaminophen in higher doses (200 and 400 mg/kg) was ineffective. Also, the response of the non-effective dose of acetaminophen (25 mg/kg) was potentiated by the non-effective dose of morphine (0.1 mg/kg) in the FST that was antagonized by naloxone. Also, in contrast to morphine (10 mg/kg), acetaminophen (100 mg/kg, i.p.) induced neither tolerance to the anti-immobility behavior nor withdrawal syndrome after repeated administration. In addition, RT-PCR showed that hippocampal mu- and kappa-opioid receptor mRNA expression increased in mice after repeated administration of acetaminophen; however, morphine therapy for 6 days did not affect kappa-opioid receptor expression. Our findings demonstrated that acetaminophen in lower doses but not high doses revealed an antidepressant-like activity without inducing tolerance and withdrawal syndromes. Moreover, the observed effect of acetaminophen may be via altering the opioid system, particularly hippocampal mu- and kappa-receptors.
Collapse
MESH Headings
- Animals
- Acetaminophen/pharmacology
- Acetaminophen/administration & dosage
- Male
- Mice
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/administration & dosage
- Dose-Response Relationship, Drug
- Swimming
- Depression/drug therapy
- Depression/metabolism
- Morphine/pharmacology
- Morphine/administration & dosage
- Hippocampus/drug effects
- Hippocampus/metabolism
- Disease Models, Animal
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/administration & dosage
- Receptors, Opioid/metabolism
- Receptors, Opioid/drug effects
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/drug effects
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Behnam Azizolahi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Farnaz Masoudipur
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Amirreza Boroun
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Milad Azizi
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Somayeh Jafrasteh
- Clinical Research Development Unit, Ganjavian Hospital, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
4
|
Oliveira AS, Biano LS, Palmeira DN, de Almeida DR, Lopes-Ferreira M, Kohlhoff M, Sousa JAC, Brandão GC, Silva AMDOE, Grespan R, Camargo EA. Antinociceptive effect of Nephelium lappaceum L. fruit peel and the participation of nitric oxide, opioid receptors, and ATP-sensitive potassium channels. Front Pharmacol 2023; 14:1287580. [PMID: 38026962 PMCID: PMC10644719 DOI: 10.3389/fphar.2023.1287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.
Collapse
Affiliation(s)
- Alan Santos Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Laiza Santos Biano
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Mônica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), São Paulo, Brazil
| | - Markus Kohlhoff
- Oswaldo Cruz Foundation, René Rachou Institute, Belo Horizonte, Brazil
| | | | | | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Renata Grespan
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Enilton Aparecido Camargo
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
5
|
Ferreira PMP, Almeida AACD, Conceição MLP, Pessoa ODL, Marques LGA, Capasso R, Pessoa C. Cordia oncocalyx and oncocalyxones: From the phytochemistry to the anticancer action and therapeutic benefits against chronic diseases. Fitoterapia 2023; 169:105624. [PMID: 37500017 DOI: 10.1016/j.fitote.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Cordia oncocalyx Allemão is an endemic economically underexploited plant from Brazilian semi-arid region. Herein, we carried out a well-defined bibliographic review about the pharmacological activities of oncocalyxones from C. oncocalyx and mechanisms responsible for the biomedical properties. MeSH terms were used in the scientific databases for a narrative exploration. Technological development and bioproducts were also examined. Cordia oncocalyx is a deciduous tree of sexual reproduction rich in terpenoid quinones. Among them, oncocalyxone A, a 1,4-benzoquinone, the main compound from heartwood ethanol extracts, revealed anti-inflammatory and anti-edematogenic actions induced by carrageenan and dextran and antinociceptive potential in mice provoked by acetic acid and formalin. Oncocalyxone A inhibits platelet aggregation via activation of the soluble guanylate cyclase enzyme and blocks glycation processes. In addition to the antimicrobial effects against protozoa, fungi and bacteria and relaxation of smooth muscles, oncocalyxone A reduces mean blood pressure and glycemia in diabetic rats, decreases glomerular filtration parameters and tubular transport of electrolytes, and presents in vitro antimitotic and cytotoxic action upon different types of cancers, including resistant lung carcinoma lines. It has low oral acute toxicity (LD50 > 2000 mg/kg) and activates cellular apoptosis through the production of free radicals and interactions with DNA. However, no patents were found, which also emphasizes that Brazil, as the cradle of the main articles on C. oncocalyx, is wasting time and money. Moreover, slight systemic deleterious effects in mammals stimulate the use of oncocalyxone A and related compounds as lead constituents of safer drugs against chronic diseases.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil.
| | - Antonia Amanda Cardoso de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Lana Grasiela Alves Marques
- Postgraduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Cláudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Forouzanfar F, Tanha NK, Pourbagher-Shahri AM, Mahdianpour S, Esmaeili M, Ghazavi H. Synergistic effect of ellagic acid and gabapentin in a rat model of neuropathic pain. Metab Brain Dis 2023; 38:1421-1432. [PMID: 36811684 DOI: 10.1007/s11011-023-01190-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Neuropathic pain is a subtype of chronic pain characterized by a primary lesion or dysfunction of the peripheral or central nervous system. The current pain management of neuropathic pain is inadequate and needs new medications. AIM We studied the effects of 14 days of intraperitoneal ellagic acid (EA) and gabapentin administration in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the right sciatic nerve. METHODS Rats were divided into six groups: (1) control, (2) CCI, (3) CCI + EA (50 mg/kg), 4) CCI + EA (100 mg/kg), 5) CCI + gabapentin (100 mg/kg), and 6) CCI + EA (100 mg/kg) + gabapentin (100 mg/kg). Behavioral tests, including mechanical allodynia, cold allodynia, and thermal hyperalgesia, were conducted on days - 1(pre-operation), 7, and 14 post-CCI. In addition, at day 14 post-CCI, spinal cord segments were collected to measure the expression of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and oxidative stress markers, including malondialdehyde (MDA) and thiol. RESULTS CCI increased mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats which were reduced by treatment with EA (50 or 100 mg/kg), gabapentin, or their combination. CCI increased TNF-α, NO, and MDA levels and decreased thiol content in the spinal cord, which all were reverted by administration of EA (50 or 100 mg/kg), gabapentin, or their combination. CONCLUSION This is the first report on ellagic acid's ameliorative effect in rats' CCI-induced neuropathic pain. This effect can be attributed to its anti-oxidative and anti-inflammatory, thus making it potentially useful as an adjuvant to conventional treatment.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili Tanha
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeide Mahdianpour
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdiyeh Esmaeili
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Guerrero-Solano JA, Bautista M, Espinosa-Juárez JV, Moreno-Rocha LA, Betanzos-Cabrera G, Salanță LC, De la O Arciniega M, Olvera-Hernández EG, Jaramillo-Morales OA. Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate ( Punica granatum L.) in the Formalin Test. PLANTS (BASEL, SWITZERLAND) 2022; 12:131. [PMID: 36616260 PMCID: PMC9824874 DOI: 10.3390/plants12010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Pharmacological treatment of pain often causes undesirable effects, so it is necessary to look for natural, safe, and effective alternatives to alleviate painful behavior. In this context, it is known that different parts of pomegranate have been widely consumed and used as preventive and therapeutic agents since ancient times. For example, it has been shown to have an antinociceptive effect, however, there are many varieties. Each part has been found to display unique and attractive pharmacological activities. The content of the active phytochemicals in pomegranate depends on the cultivar, geographical region, the maturity, and the processing method. In this context, the effects of various pomegranate varieties and other parts of the pomegranate (e.g., peel and juice) on pain behavior have not been examined. The aim was to evaluate and compare the antinociceptive effect of ethanolic extracts (PEx) and lyophilized juices (Lj) of three varieties of pomegranate in the formalin test. In addition, computer-aided analysis was performed for determining biological effects and toxicity. Peels were extracted with ethanol and evaporated by rotary evaporation, and juices were filtered and lyophilized. Wistar rats (N = 48) were randomly distributed into 8 groups (n = 6) (Vehicle, Acetylsalicylic Acid, PEx1, PEx2, PEx3, Lj1, Lj2, and Lj3). The formalin test (2%) was carried out, which consists of administering formalin in paw and counting the paw flinches for 1 h, with prior administration of treatments. All samples have an antinociceptive effect (phase 1: 2.8-10%; phase 2: 23.2-45.2%). PEx2 and Lj2 had the greatest antinociceptive effect (57.8-58.9%), and bioactive compounds such as tannins and flavonoids showed promising pharmacodynamic properties that may be involved in the antinociceptive effect, and can be considered as a natural alternative for the treatment of nociceptive and inflammatory pain.
Collapse
Affiliation(s)
- José Antonio Guerrero-Solano
- Institute of Health Sciences, Academic Area of Nursing, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Mirandeli Bautista
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Josué Vidal Espinosa-Juárez
- School of Chemical Sciences, Autonomous University of Chiapas, Carretera Panamericana Km. 2.5 S/N, Ocozocoautla de Espinosa, Chiapas 29120, Mexico
| | - Luis Alfonso Moreno-Rocha
- Biological Systems Department, Autonomous Metropolitan University, Xochimilco Unit, Calzada del Hueso 1110, Villa Quietud, Coyoacán, Mexico City CDMX 04960, Mexico
| | - Gabriel Betanzos-Cabrera
- Institute of Health Sciences, Academic Area of Nutrition, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Liana Claudia Salanță
- Faculty of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Minarda De la O Arciniega
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Elena G. Olvera-Hernández
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Osmar Antonio Jaramillo-Morales
- Life Sciences Division, Nursing and Obstetrics Department, Campus Irapuato-Salamanca, University of Guanajuato, Ex Hacienda el Copal, Km. 9 Carretera Irapuato-Silao, A.P. 311, Irapuato 36500, Mexico
| |
Collapse
|
8
|
Guerrero-Solano JA, Bautista M, Velázquez-González C, De la O-Arciniega M, González-Olivares LG, Fernández-Moya M, Jaramillo-Morales OA. Antinociceptive Synergism of Pomegranate Peel Extract and Acetylsalicylic Acid in an Animal Pain Model. Molecules 2021; 26:5434. [PMID: 34576905 PMCID: PMC8469324 DOI: 10.3390/molecules26185434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/29/2023] Open
Abstract
Several modern drugs, which are derived from traditional herbal medicine are used in contemporary pharmacotherapy. Currently, the study of drug-plant interactions in pain has increased in recent years, looking for greater efficacy of the drug and reduce side effects. The antinociception induced by intragastric co-administration of the combination of pomegranate peel extract (PoPEx) and acetylsalicylic acid (ASA) was assessed using the isobolographic analysis in formalin test (nociceptive and inflammatory pain). The effective dose that produced 30% of antinociception (ED30) was calculated for both drugs from the logarithmic dose-response curves, subsequently generating a curve with the combination on fixed proportions (1:1) of PoPEx and ASA. Through isobolographic analysis, this experimental ED30 was compared with the calculated theoretical additive ED30. The result was a synergistic interaction, the experimental ED30 was significantly smaller (p < 0.05) than the theoretical ED30. The antinociceptive mechanism of the PoPEx-ASA combination involves the l-Arginine/NO/cGMP pathway, antioxidant capacity, and high content of total phenols. These findings suggest that an interaction between PoPEx and ASA could be a novel treatment for inflammatory and nociceptive pain, also diminish the secondary reactions of ASA.
Collapse
Affiliation(s)
- José Antonio Guerrero-Solano
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico; (J.A.G.-S.); (C.V.-G.); (M.D.l.O.-A.)
| | - Mirandeli Bautista
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico; (J.A.G.-S.); (C.V.-G.); (M.D.l.O.-A.)
| | - Claudia Velázquez-González
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico; (J.A.G.-S.); (C.V.-G.); (M.D.l.O.-A.)
| | - Minarda De la O-Arciniega
- Institute of Health Sciences, Academic Area of Pharmacy, Autonomous University of the State of Hidalgo, Circuito Ex Hacienda La Concepción S/N Carretera Pachuca Actopan, San Agustín Tlaxiaca, Hidalgo 42160, Mexico; (J.A.G.-S.); (C.V.-G.); (M.D.l.O.-A.)
| | - Luis Guillermo González-Olivares
- Institute of Basic Sciences and Engineering, Academic Area of Chemistry, University of the State of Hidalgo, Carretera Pachuca-Tulancingo km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico;
| | - Monserrat Fernández-Moya
- Life Sciences Division, Nursing and Obstetrics Department, Campus Irapuato-Salamanca, University of Guanajuato, Ex Hacienda el Copal, km. 9 Carretera Irapuato- Silao, A.P. 311, Irapuato, Guanajuato 36500, Mexico;
| | - Osmar Antonio Jaramillo-Morales
- Life Sciences Division, Nursing and Obstetrics Department, Campus Irapuato-Salamanca, University of Guanajuato, Ex Hacienda el Copal, km. 9 Carretera Irapuato- Silao, A.P. 311, Irapuato, Guanajuato 36500, Mexico;
| |
Collapse
|
9
|
Effect of Ellagic Acid on Seizure Threshold in Two Acute Seizure Tests in Mice. Molecules 2021; 26:molecules26164841. [PMID: 34443428 PMCID: PMC8398784 DOI: 10.3390/molecules26164841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
Ellagic acid (EA) is a natural dietary polyphenol that has many beneficial properties, including anti-inflammatory, antioxidant, antiviral, antibacterial, and neuroprotective effects. Studies have revealed that EA may modulate seizure activity in chemically induced animal models of seizures. Therefore, the aim of the present study was to investigate the effect of EA on the seizure threshold in two acute seizure tests in male mice, i.e., in the intravenous (i.v.) pentylenetetrazole (PTZ) seizure test and in the maximal electroshock seizure threshold (MEST) test. The obtained results showed that EA (100 mg/kg) significantly elevated the threshold for both the first myoclonic twitch and generalized clonic seizure in the i.v. PTZ seizure test. At the highest dose tested (200 mg/kg), EA increased the threshold for tonic hindlimb extension in the MEST test. EA did not produce any significant changes in motor coordination (assessed in the chimney test) or muscular strength (investigated in the grip-strength test). The plasma and total brain concentration-time profiles of EA after intraperitoneal and oral administration were also determined. Although further studies are necessary to confirm the anticonvulsant activity of EA, our findings suggest that it may modulate seizure susceptibility in animal models.
Collapse
|
10
|
Brito TGDS, Silva APSD, Cunha RXD, Fonseca CSMD, Araújo TFDS, Campos JKDL, Nascimento WM, Araújo HDAD, Silva JPRE, Tavares JF, Santos BSD, Lima VLDM. Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113611. [PMID: 33242623 DOI: 10.1016/j.jep.2020.113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia cauliflora (Mart.) Kausel, known in Brazil as jabuticaba or jaboticaba has been used by Brazilian native populations for medicinal purposes, including those related to inflammatory conditions, such as asthma, diarrhea, disorders in female genitourinary tract, and tonsillitis. Inflammation has emerged as a main factor for the oxidative stress, hyperglycemia, and dyslipidemia present in chronic noncommunicable diseases (NCDs). Such disturbances have been a leading cause of death worldwide for decades, despite significant efforts in developing new therapies. Therefore, strengthening the relevance of ethnobotanic approaches, as P. cauliflora has the potential to become a natural, native, and traditional product to prevent and treat inflammation-associated diseases more effectively for more people. AIM OF THE STUDY Evaluate anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic properties of hydroethanolic extract of P. cauliflora epicarps (PcE). MATERIALS AND METHODS Phytochemical compound from the PcE were identified through HPLC-DAD-ESI-MSn analysis. Antioxidant activity was determined by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The anti-inflammatory potential was investigated by carrageenan-induced paw edema and peritonitis in mice. Analgesic effect was assessed, in mice, though hot plate test and acetic acid-induced abdominal writhing. Antidiabetic and hypolipidemic potential were evaluated using alloxan-induced diabetic mice. RESULTS Tannins, phenolic acids, and their derivatives were the predominant phytochemicals found. Overall, PcE showed different properties related to the treatment of clinical conditions associated with chronic diseases as a potent antioxidant activity, demonstrating a radical scavenging action similar to gallic acid. PcE oral administration also significantly reduced inflammation induced by paw edema and partially blocked leukocyte migration. Moreover, PcE produced peripheral and central analgesic effects, as evaluated in the writhing model and hot plate tests. Treatment with PcE significantly improved glucose levels and lipid markers in diabetic mice. CONCLUSIONS P. cauliflora fruits are rich sources of secondary metabolites, mainly tannins and phenolic acids with high biological potential, which can effectively contribute to the approach of preventing and controlling chronic NCDs.
Collapse
Affiliation(s)
- Thaíse Gabriele da Silva Brito
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Ana Paula Sant'Anna da Silva
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Rebeca Xavier da Cunha
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Caíque Silveira Martins da Fonseca
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| | - Tiago Ferreira da Silva Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale Eo São Francisco, Avenida José de Sá Maniçoba, S/N, CEP 56304917, Petrolina, PE, Brazil
| | - Janaína Karin de Lima Campos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Weber Melo Nascimento
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Joanda Paolla Raimundo E Silva
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Bianka Santana Dos Santos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| |
Collapse
|
11
|
Yang J, Guo Y, Lee R, Henning SM, Wang J, Pan Y, Qing T, Hsu M, Nguyen A, Prabha S, Ojha R, Small GW, Heber D, Li Z. Pomegranate Metabolites Impact Tryptophan Metabolism in Humans and Mice. Curr Dev Nutr 2020; 4:nzaa165. [PMID: 33274309 PMCID: PMC7695807 DOI: 10.1093/cdn/nzaa165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We showed that pomegranate juice (PomJ) can help to maintain memory in adults aged >50 y. The mechanism for this effect is unknown, but might involve Trp and its metabolites, which are important in brain function. OBJECTIVES We aimed to test the hypothesis that PomJ and its metabolites ellagic acid (EA) and urolithin A (UA) affect Trp metabolism. METHODS Stool and plasma from a cohort [11 PomJ, 9 placebo drink (PL)] of subjects enrolled in our double-blind, placebo-controlled trial (NCT02093130) were collected at baseline and after 1 y of PomJ or PL consumption. In a mouse study, cecum and serum were collected from DBA/2J mice receiving 8 wk of dietary 0.1% EA or UA supplementation. Trp metabolites and intestinal microbiota were analyzed by LC-MS and 16S rRNA gene sequencing, respectively. RESULTS In the human study, the change in the plasma Trp metabolite indole propionate (IPA) over 1 y was significantly different between PomJ and PL groups (P = 0.03). In serum of experimental mice, we observed a 230% increase of IPA by EA but not UA, a 54% increase of indole sulfate by UA but not EA, and 43% and 34% decreases of kynurenine (KYN) by EA and UA, respectively. In cecum, there was a 32% decrease of Trp by UA but not EA, and an 86% decrease of KYN by EA but not UA (P < 0.05). The abundance of 2 genera, Shigella and Catenibacterium, was reduced by PomJ in humans as well as by UA in mice, and their abundance was negatively associated with blood IPA in humans and mice (P < 0.05). CONCLUSIONS These results suggest a novel mechanism involving the regulation of host and microbial Trp metabolism that might contribute to the health benefits of ellagitannins and EA-enriched food, such as PomJ.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jing Wang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yajing Pan
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine , Beijing, China
| | - Tianyu Qing
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine , Beijing, China
| | - Mark Hsu
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alex Nguyen
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siddarth Prabha
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rashi Ojha
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System , Los Angeles, CA, USA
| |
Collapse
|
12
|
Pomegranate as a Potential Alternative of Pain Management: A Review. PLANTS 2020; 9:plants9040419. [PMID: 32235455 PMCID: PMC7238014 DOI: 10.3390/plants9040419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
The use of complementary medicine has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of drugs. Punica granatum L. (pomegranate) has been used in traditional medicine for different kinds of pain. This review aims to explore the scientific evidence about the antinociceptive effect of pomegranate. A selection of original scientific articles that accomplished the inclusion criteria was carried out. It was found that different parts of pomegranate showed an antinociceptive effect; this effect can be due mainly by the presence of polyphenols, flavonoids, or fatty acids. It is suggested in the literature that the mechanisms of action may be related to the activation of the L-arginine / NO pathway, members of the TRP superfamily (TRPA1 or TRPV1) and the opioid system. The implications for the field are to know the mechanisms of action by which this effect is generated and thus be able to create alternative treatments for specific types of pain, which help alleviate it and reduce the adverse effects produced by drugs. The results propose that pomegranate and secondary metabolites could be considered in the treatment of inflammatory, nociceptive, and neuropathic pain.
Collapse
|
13
|
Zhang R, Xu B, Zhang MN, Zhang T, Wang ZL, Zhao G, Zhao GH, Li N, Fang Q, Wang R. Peripheral and central sites of action for anti-allodynic activity induced by the bifunctional opioid/NPFF receptors agonist BN-9 in inflammatory pain model. Eur J Pharmacol 2017; 813:122-129. [DOI: 10.1016/j.ejphar.2017.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
14
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Rajabi H, Pashmforoush M. Pharmacological evidence for systemic and peripheral antinociceptive activities of pioglitazone in the rat formalin test: Role of PPARγ and nitric oxide. Eur J Pharmacol 2017; 805:84-92. [DOI: 10.1016/j.ejphar.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 02/11/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
|
15
|
Silva RHM, Lima NDFM, Lopes AJO, Vasconcelos CC, de Mesquita JWC, de Mesquita LSS, Lima FCVM, Ribeiro MNDS, Ramos RM, Cartágenes MDSDS, Garcia JBS. Antinociceptive Activity of Borreria verticillata: In vivo and In silico Studies. Front Pharmacol 2017; 8:283. [PMID: 28588488 PMCID: PMC5439013 DOI: 10.3389/fphar.2017.00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Borreria verticillata (L.) G. Mey. known vassourinha has antibacterial, antimalarial, hepatoprotective, antioxidative, analgesic, and anti-inflammatory, however, its antinociceptive action requires further studies. Aim of the study evaluated the antinociceptive activity of B. verticillata hydroalcoholic extract (EHBv) and ethyl acetate fraction (FAc) by in vivo and in silico studies. In vivo assessment included the paw edema test, writhing test, formalin test and tail flick test. Wistar rats and Swiss mice were divided into 6 groups and given the following treatments oral: 0.9% NaCl control group (CTRL), 10 mg/kg memantine (MEM), 10 mg/kg indomethacin (INDO), 500 mg/kg EHBv (EHBv 500), 25 mg/kg FAc (FAc 25) and 50 mg/kg FAc (FAc 50). EHBv, FAc 25 and 50 treatments exhibited anti-edematous and peripheral antinociceptive effects. For in silico assessment, compounds identified in FAc were subjected to molecular docking with COX-2, GluN1a and GluN2B. Ursolic acid (UA) was the compound with best affinity parameters (binding energy and inhibition constant) for COX-2, GluN1a, GluN2B, and was selected for further analysis with molecular dynamics (MD) simulations. In MD simulations, UA exhibited highly frequent interactions with residues Arg120 and Glu524 in the COX-2 active site and NMDA, whereby it might prevent COX-2 and NMDA receptor activation. Treatment with UA 10 mg/Kg showed peripheral and central antinociceptive effect. The antinociceptive effect of B. verticillata might be predominantly attributed to peripheral actions, including the participation of anti-inflammatory components. Ursolic acid is the main active component and seems to be a promising source of COX-2 inhibitors and NMDA receptor antagonists.
Collapse
Affiliation(s)
- Rosa H M Silva
- Experimental Study of Pain Laboratory, Department of Physiological Sciences, Federal University of MaranhãoSão Luís, Brazil
| | - Nathália de Fátima M Lima
- Experimental Study of Pain Laboratory, Department of Physiological Sciences, Federal University of MaranhãoSão Luís, Brazil
| | - Alberto J O Lopes
- Experimental Study of Pain Laboratory, Department of Physiological Sciences, Federal University of MaranhãoSão Luís, Brazil
| | - Cleydlenne C Vasconcelos
- Experimental Study of Pain Laboratory, Department of Physiological Sciences, Federal University of MaranhãoSão Luís, Brazil
| | - José W C de Mesquita
- Laboratory of Pharmacognosy, Department of Pharmacy, Federal University of MaranhãoSão Luís, Brazil
| | - Ludmilla S S de Mesquita
- Laboratory of Pharmacognosy, Department of Pharmacy, Federal University of MaranhãoSão Luís, Brazil
| | - Fernando C V M Lima
- Experimental Study of Pain Laboratory, Department of Physiological Sciences, Federal University of MaranhãoSão Luís, Brazil
| | - Maria N de S Ribeiro
- Laboratory of Pharmacognosy, Department of Pharmacy, Federal University of MaranhãoSão Luís, Brazil
| | - Ricardo M Ramos
- Research Laboratory Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of PiauíTeresina, Brazil
| | | | - João B S Garcia
- Experimental Study of Pain Laboratory, Department of Pain and Palliative Care, Federal University of MaranhãoSão Luís, Brazil
| |
Collapse
|
16
|
de Almeida AAC, Silva RO, Nicolau LAD, de Brito TV, de Sousa DP, Barbosa ALDR, de Freitas RM, Lopes LDS, Medeiros JVR, Ferreira PMP. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide. Inflammation 2017; 40:511-522. [PMID: 28091830 DOI: 10.1007/s10753-016-0496-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E2, and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1β levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.
Collapse
Affiliation(s)
| | - Renan Oliveira Silva
- Laboratory of Pharmacology of Inflammation and Cancer, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Antonio Duarte Nicolau
- Laboratory of Pharmacology of Inflammation and Cancer, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tarcísio Vieira de Brito
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | | | - André Luiz Dos Reis Barbosa
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | - Rivelilson Mendes de Freitas
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Department of Pharmacy, Federal University of Piauí, Teresina, Brazil
| | | | - Jand-Venes Rolim Medeiros
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil. .,Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
17
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Alboghobeish S. Systemic and local anti-nociceptive effects of simvastatin in the rat formalin assay: Role of peroxisome proliferator-activated receptor γ and nitric oxide. J Neurosci Res 2017; 95:1776-1785. [DOI: 10.1002/jnr.24008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology; School of Pharmacy, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Bahareh Naghizadeh
- Department of Pharmacology; School of Pharmacy, Pain Research Center, Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology; School of Medicine, Dezful University of Medical Sciences; Dezful Iran
| | - Soheila Alboghobeish
- Department of Pharmacology; School of Pharmacy, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| |
Collapse
|
18
|
DEMİR ÖZKAY Ü, CAN ÖD, TURAN N, ÇAVUŞOĞLU KAYA B. Synthesis and antinociceptive activities of some novel benzimidazole-piperidine derivatives. Turk J Chem 2017. [DOI: 10.3906/kim-1612-76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
19
|
Mansouri MT, Farbood Y, Naghizadeh B, Shabani S, Mirshekar MA, Sarkaki A. Beneficial effects of ellagic acid against animal models of scopolamine- and diazepam-induced cognitive impairments. PHARMACEUTICAL BIOLOGY 2016; 54:1947-1953. [PMID: 26828763 DOI: 10.3109/13880209.2015.1137601] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context In a previous study, it has been shown that ellagic acid (EA), a polyphenolic compound found in pomegranate and different berries, prevents cognitive and hippocampal long-term potentiation (LTP) impairments induced by traumatic brain injury in rats through antioxidant and anti-inflammatory mechanisms. Objective The present study was conducted to assess the potential of EA as a memory enhancer. Materials and methods The elevated plus maze (EPM) and passive avoidance (PA) paradigm were used to evaluate learning and memory parameters. Three doses (10, 30 and 100 mg/kg, i.p.) of EA were administered to animals. Memory impairment was induced by scopolamine treatment (0.4 mg/kg, i.p.) and/or diazepam (1 mg/kg, i.p.). Acquisition trials were carried out 30 min after scopolamine treatment and retention trials were performed for 5 min 24 h after the acquisition trials. Results EA at doses 30 and 100 mg/kg significantly reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) in the EPM and PA tests in mice. Also, EA at doses 30 and 100 mg/kg significantly antagonized the amnesia induced by diazepam (1 mg/kg, i.p.) in EPM test in rats. Moreover, chronic administration of EA at dose 30 mg/kg ameliorated the memory deficit induced by diazepam (1 mg/kg, i.p.) in rats. Discussion and conclusion This study demonstrates that ellagic acid is effective in preventing scopolamine- and diazepam-induced cognitive impairments without altering the animals' locomotion. This suggests the potential of EA application as a useful memory restorative agent in the treatment of dementia seen in elderly persons.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- a Department of Pharmacology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- b Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Yaghoub Farbood
- b Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- c Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Bahareh Naghizadeh
- d Department of Pharmacology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Sohreh Shabani
- b Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- c Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohammad Ali Mirshekar
- e Department of Physiology, School of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Alireza Sarkaki
- b Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- c Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
20
|
Mansouri MT, Hemmati AA, Naghizadeh B, Mard SA, Rezaie A, Ghorbanzadeh B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J Pharmacol 2016; 47:292-8. [PMID: 26069367 PMCID: PMC4450555 DOI: 10.4103/0253-7613.157127] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/17/2015] [Accepted: 04/10/2015] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Ellagic acid (EA) has shown antinociceptive and anti-inflammatory effects. Inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) enzymes and also cytokines play a key role in many inflammatory conditions. This study was aimed to investigate the mechanisms involved in the anti-inflammatory effect of EA. MATERIALS AND METHODS Carrageenan-induced mouse paw edema model was used for induction of inflammation. RESULTS The results showed that intraplantar injection of carrageenan led to time-dependent development of peripheral inflammation, which resulted in a significant increase in the levels of tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) β, nitric oxide (NO) and prostaglandin E2 (PGE2) and also iNOS and COX-2 protein expression in inflamed paw. However, systemic administration of EA (1-30 mg/kg, intraperitoneal [i.p.]) could reduce edema in a dose-dependent fashion in inflamed rat paws with ED50 value 8.41 (5.26-14.76) mg/kg. It decreased the serum concentration of NO, PGE2, aspartate aminotransferase and alanine aminotransferase, and suppress the protein expression of iNOS, COX-2 enzymes, and attenuated the formation of PGE2, TNF-α and IL-1 β in inflamed paw tissue. We also demonstrated that EA significantly decreased the malondialdehyde (MDA) level in liver at 5 h after carrageenan injection. Moreover, histopathological studies indicated that EA significantly diminished migration of polymorphonuclear leukocytes into site of inflammation, as did indomethacin. CONCLUSIONS Collectively, the anti-inflammatory mechanisms of EA might be related to the decrease in the level of MDA, iNOS, and COX-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNFα, IL1 β), NO and PGE2 overproduction.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Deptartment of Pharmacology, Physiology and Atherosclerosis Research Centers, School of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Ali Asghar Hemmati
- Deptartment of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Bahareh Naghizadeh
- Pain and Physiology Research Centers, School of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Seyyed Ali Mard
- Deptartment of Physiology, Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Anahita Rezaie
- Deptartment of Physiology, School of Veterinary Medicine, University of Shahid Chamran, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Deptartment of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| |
Collapse
|
21
|
Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain. Eur J Pharmacol 2016; 779:38-45. [DOI: 10.1016/j.ejphar.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
22
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Ellagic acid enhances the antinociceptive action of venlafaxine in mouse acetic acid-induced pain: An isobolographic analysis. Pharmacol Rep 2015; 67:473-7. [DOI: 10.1016/j.pharep.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/18/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
|
24
|
Naghizadeh B, Mansouri MT, Ghorbanzadeh B. Ellagic acid enhances the antinociceptive action of carbamazepine in the acetic acid writhing test with mice. PHARMACEUTICAL BIOLOGY 2015; 54:157-61. [PMID: 25898222 DOI: 10.3109/13880209.2015.1025288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CONTEXT Ellagic acid (EA) produced antinociceptive and anti-inflammatory effects through the central and peripheral sites of action. OBJECTIVE The objective of the current study was to examine the functional interaction between ellagic acid and carbamazepine (CBZ) on pain. MATERIALS AND METHODS Fourteen groups of mice (8-10 each) were used in this study. Pain was induced by intraperitoneal acetic acid in mice (writhing test) and the functional interaction was analyzed using the isobolographic method. EA at doses 0.3, 1, 3, and 10 mg/kg and carbamazepine at doses 3, 10, 20, and 30 mg/kg, alone and also in combination (1/2, 1/4, and 1/8 of the drug's ED50) were intraperitoneally administered 30 min before acetic acid (0.6% v/v). Then, the abdominal writhes were counted during a 25-min period. RESULTS EA (0.3-10 mg/kg, i.p.) and CBZ (3-30 mg/kg, i.p.) inhibited the writhing response evoked by acetic acid. Fifty percent effective dose (ED50) values against this tonic pain were 1.02 mg/kg and 6.40 mg/kg for EA and CBZ, respectively. The antinociception induced by EA showed higher potency than that of carbamazepine. Co-administration of increasing fractional increments of ED50 values of EA and CBZ produced additive interaction against writhing responses, as revealed by isobolographic analysis. DISCUSSION AND CONCLUSION These results suggest that a combination of carbamazepine and ellagic acid may be a new strategy for the management of neuropathic pain such as what occurs in trigeminal neuralgia, since the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic effect through microsomal enzyme induction.
Collapse
Affiliation(s)
- Bahareh Naghizadeh
- a Department of Pharmacology , Medical School, Pain and Physiology Research Centers, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohammad Taghi Mansouri
- b Department of Pharmacology , Medical School, Physiology and Atherosclerosis Research Centers, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran , and
| | - Behnam Ghorbanzadeh
- c Department of Pharmacology , Medical School, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
25
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B. Sildenafil enhances the peripheral antinociceptive effect of ellagic acid in the rat formalin test. Indian J Pharmacol 2015; 46:404-8. [PMID: 25097278 PMCID: PMC4118533 DOI: 10.4103/0253-7613.135952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/31/2014] [Accepted: 06/11/2014] [Indexed: 11/17/2022] Open
Abstract
Objective: Ellagic acid (EA), a major polyphenolic compound of pomegranate juice, produces antinociceptive effects, which are mediated through opioidergic and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways. The present study was conducted to elucidate the peripheral antinociceptive effect of EA alone and in combination with sildenafil in the rat formalin test. Materials and Methods: Pain was produced by intraplantar injection of formalin (2.5%) in rats and nociceptive behavior was measured as the number of flinches every 5 min in 60 min after injection. Results: Local administration of EA and sildenafil dose-dependently increased the nociception threshold in both phases of the test. Moreover, sub-effective doses of sildenafil (25 or 50 mcg/paw, i.p.) significantly and dose-dependently enhanced the antinociception induced by a sub-effective dose of EA (60 mcg/paw, i.pl.) in both phases of the test. The antinociception produced by these drugs alone, or in combination, was due to a peripheral site of action, since the administration in the contralateral paw was ineffective. Conclusion: Our results suggest that EA has local peripheral antinociceptive activity, and enhancement of this effect with sildenafil probably occurs through the inhibition of cGMP metabolism.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology, School of Medicine, Physiology and Atherosclerosis Research Centers, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ; Pain and Physiology Research Centers, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Naghizadeh
- Department of Pharmacology, School of Medicine, Physiology and Atherosclerosis Research Centers, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ; Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Physiology and Atherosclerosis Research Centers, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Hemmati AA, Kalantari H, Siahpoosh A, Ghorbanzadeh B, Jamali H. Anti-inflammatory Effect of Hydroalcoholic Extract of the Washingtonia filifera Seeds in Carrageenan-Induced Paw Edema in Rats. Jundishapur J Nat Pharm Prod 2015. [DOI: 10.17795/jjnpp-19887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Ghorbanzadeh B, Mansouri MT, Hemmati AA, Naghizadeh B, Mard SA, Rezaie A. Involvement of L-arginine/NO/cGMP/K(ATP) channel pathway in the peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacol Biochem Behav 2014; 126:116-21. [PMID: 25278343 DOI: 10.1016/j.pbb.2014.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/05/2014] [Accepted: 09/20/2014] [Indexed: 01/08/2023]
Abstract
The present study was conducted to evaluate the local antinociceptive actions of EA and the possible involvement of l-arginine/NO/cGMP/KATP channel pathway in this effect using formalin test in rats. To evaluate the involvement of l-arginine/NO/cGMP/KATP channel pathway in the antinociceptive action of EA, rats were pre-treated intraplantarlly with l-NAME (NOS inhibitor, 25-100μg/paw), methylene blue (guanylyl cyclase inhibitor, 100-400μg/paw), glibenclamide (ATP-sensitive K(+) channel blocker, 25-100μg/paw), l-arginine (a nitric oxide precursor, 25-100μg/paw) and sodium nitroprusside (125-500μg/paw). The local peripheral ipsilateral, but not contralateral, administration of EA into the right paw (30-300μg/paw) produced a dose-related antinociception during both early and late phases of formalin test which is comparable with morphine (25μg/paw). Moreover, local pre-treatment with l-NAME, methylene blue and glibenclamide dose-dependently prevented EA (100μg/paw)-induced antinociception in late phase. Additionally, administration of l-arginine and sodium nitroprusside significantly potentiated the antinociception induced by EA in the late phase. However, these treatments had no significant effect on antinociceptive response of EA in the early phase of the formalin test. The results of the present study showed that EA-induced local peripheral antinociception during the both phases of formalin test. Also, our data suggested the activation of the l-arginine/NO/cGMP/KATP channels pathway in EA-induced antinociception in late phase of formalin test. Topical application of EA by ointment or jelly might be a useful method to relieving the inflammatory pain states.
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- Dept. of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Dept. of Pharmacology, Physiology and Atherosclerosis Research Centers, School of Medicine, Ahvaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahvaz, Iran.
| | - Ali Asghar Hemmati
- Dept. of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahvaz, Iran
| | - Bahareh Naghizadeh
- Dept. of Pharmacology, Pain and Physiology Research Centers, School of Medicine, Ahvaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahvaz, Iran
| | - Seyyed Ali Mard
- Dept. of Physiology, Physiology Research Center, School of Medicine, Ahvaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahvaz, Iran
| | - Anahita Rezaie
- Department of Pathobiology, School of Veterinary Medicine, University of Shahid Chamran, Ahvaz, Iran
| |
Collapse
|