1
|
Wang R, Sun Y, Wang M, Li H, Liu S, Liu Z. Therapeutic effect of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves on ischemic stroke via the microbiota-gut-brain axis. Phytother Res 2023; 37:4801-4818. [PMID: 37518502 DOI: 10.1002/ptr.7947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) are widely used to treat ischemic stroke (IS); however, the specific mechanism remains unclear. The microbiota-gut-brain axis plays a critical role in IS and has become a potential therapeutic target. This study aimed to reveal and verify the therapeutic effect of ESL on IS through the microbiota-gut-brain axis. Ultra-high-performance liquid chromatography coupled with mass spectrometry-based untargeted/targeted metabolomics combined with 16S rRNA microbiota sequencing strategy were used to investigate the regulatory effect of ESL on the metabolism and intestinal microenvironment after IS. Lactobacillus reuteri and Clostridium butyricum were used to treat rats with IS to verify that elevated levels of probiotics are key factors in the therapeutic effect of ESL. The results showed that IS significantly altered the accumulation of 41 biomarkers, while ESL restored their concentrations back to normal. Moreover, ESL alleviated the dysbiosis of gut microbiota brought on by IS, by reducing the abundance of pathogens and increasing the abundance of probiotics (e.g., Lactobacillus reuteri and Clostridium butyricum); this could reduce post-stroke injury, thereby having a certain protective effect on IS. This study reveals that ESL plays an important role in treating IS through the microbiota-gut-brain axis, maintaining metabolic homeostasis in vivo.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Miao Y, Wen S, Zuo Q, Shen Z, Zhang Q, Feng Q. Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Cai D, Luo Z, Su J, Gan H, Wang Z, Liu X, Li S, Wu J, Chen J, Ma R, Huang M, Zhong G. Exposure-Response Analysis and Mechanism of Ginkgolide B’s Neuroprotective Effect in Acute Cerebral Ischemia/Reperfusion Stage in Rat. Biol Pharm Bull 2022; 45:409-420. [DOI: 10.1248/bpb.b21-00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dake Cai
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Zhongxing Luo
- The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Jiyan Su
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University
| | - Haining Gan
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine
| | | | - Xiaolin Liu
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Siyi Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine
| | - Jingjing Wu
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University
| | - Jiangying Chen
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Renqiang Ma
- Guangzhou Boji Medical Biotechnological Co., Ltd
| | - Min Huang
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University
| |
Collapse
|
4
|
Fan W, Zhang Y, Li X, Xu C. S-oxiracetam Facilitates Cognitive Restoration after Ischemic Stroke by Activating α7nAChR and the PI3K-Mediated Pathway. Neurochem Res 2021; 46:888-904. [PMID: 33481205 DOI: 10.1007/s11064-021-03233-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
S-oxiracetam (S-ORC), a nootropic drug, was used to protect against ischemic stroke by lessening the blood brain barrier dysfunction and inhibiting neuronal apoptosis. However, the potential effects of S-ORC in the recovery of cognitive functions after ischemic stroke and the underlying mechanisms remains unclear. In this study, middle cerebral artery occlusion/reperfusion (MCAO/R) in rats was used as the animal model. By using Y-maze test, Morris water maze, triphenyl tetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTp) nick end labeling (TUNEL) assay, hematoxylin and eosin, immunohistochemical staining and western blot to evaluate the protective effect of S-ORC on cognitive recovery, we were able to confirm that S-ORC ameliorated spatial learning impairment, tissue loss, and hippocampal neuronal apoptosis and injury induced by MCAO/R in rats. These cognitive effects were achieved by restoring the normal function of synaptophysin and increasing PSD95 expression in the hippocampus. Furthermore, we found that methyllycaconitine, the antagonist of α7 nicotinic acetylcholine receptor (α7nAChR), and LY294002, the inhibitor of phosphoinositide 3-kinase (PI3K), were able to block the cognitive effects of S-ORC after MCAO/R in rats. In conclusion, α7nAChR and PI3K are key molecules that mediated the signaling pathway leading to S-ORC-induced cognitive restoration after MCAO/R.
Collapse
Affiliation(s)
- Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xiaomin Li
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Zhang J, Jiang M, Zhao H, Han L, Jin Y, Chen W, Wang J, Zhang Z, Peng C. Synthesis of Paeonol-Ozagrel Conjugate: Structure Characterization and In Vivo Anti-Ischemic Stroke potential. Front Pharmacol 2021; 11:608221. [PMID: 33597878 PMCID: PMC7883289 DOI: 10.3389/fphar.2020.608221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a common neurological disease that can lead to mortality and disability. The current curative effect remains unsatisfactory because drug accumulation in the diseased areas is insufficient as a result of the unique blood–brain barrier. Therefore, much attention has been paid to develop a novel therapeutic compound, paeonol-ozagrel conjugate (POC), for ischemic stroke. Then, POC was successfully synthesized by conjugating of paeonol and ozagrel as mutual prodrug. A series of in vitro characterizations and evaluations, including high - resolution mass spectroscopy, nuclear magnetic resonance spectroscopy, partition coefficient, and assessment of cytotoxicity against PC12 cells, were performed. Pharmacokinetic study demonstrated POC is eliminated quickly (t1/2 = 53.46 ± 19.64 min), which supported a short dosing interval. The neurological score, infarct volume, histopathological changes, oxidative stress, inflammatory cytokines levels, and TXA2 levels also were evaluated in vivo in middle cerebral artery occlusion (MCAO) rats. All results showed that POC had a significant curative and therapeutic effect on ischemic stroke, as evaluated by the middle cerebral artery occlusion. Overall, POC can be expected to become a new drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Miaomiao Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Department of Pharmacy, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhao
- Department of Pharmacy, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lan Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Yu Jin
- Chaohu Jinchen Pharmacy Co., Ltd., Shanghai Haihong Industrial Group, Chaohu, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Jianqing Wang
- Department of Pharmacy, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| |
Collapse
|
6
|
Li P, Huang J, Geng D, Liu P, Chu Z, Zou J, Yang G, Liu L. Semi-Mechanistic Modeling of HY-021068 Based on Irreversible Inhibition of Thromboxane Synthetase. Front Pharmacol 2021; 11:588286. [PMID: 33390963 PMCID: PMC7774308 DOI: 10.3389/fphar.2020.588286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Background: HY-021068 [4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoate], developed by Hefei Industrial Pharmaceutical Institute Co., Ltd. (Anhui, China), is a potential thromboxane synthetase inhibitor under development as an anti-platelet agent for the treatment of stroke. A semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize the PK of HY-021068 and its platelet aggregation inhibitory effect in beagle dogs. Method: Beagle dogs received single oral administration of 2.5 mg/kg HY-021068 or consecutively oral administration of 5 mg/kg HY-021068 once daily for 7 days. The plasma concentration of HY-021068 and the platelet aggregation rate (PAR) were determined by liquid chromatography tandem-mass spectrometry (LC-MS/MS) assay and a photometric method, respectively. The PK/PD data was sequentially fitted by Phoenix NLME. The PK/PD parameters of HY-021068 in beagle dogs were estimated by 2.5 and 5 mg/kg dosing on the 1st day, and then used to simulate the PAR of HY-021068 on the 7th day after 5 mg/kg dosing daily. Result: A one-compartment model with saturable Michaelis-Menten elimination was best fitted to the PK of HY-021068. A mechanistic PD model based on irreversible inhibition of thromboxane synthetase was constructed to describe the relationship between plasma concentration of HY-021068 and PAR. Diagnostic plots showed no obvious bias. Visual predictive check confirmed the stability and reliability of the model. Most of PK/PD observed data on the 7th day after 5 mg/kg dosing fell in the 90% prediction interval. Conclusion: We established a semi-mechanistic PK/PD model for characterizing the PK of HY-021068 and its anti-platelet effect in beagle dogs. The model can be used to predict the concentration and PAR under different dosage regimen of HY-021068, and might be served as a reference for dose design in the future clinical studies.
Collapse
Affiliation(s)
- Ping Li
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Donghao Geng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peihua Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoxing Chu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes APF, Santos do Carmo MR, Fernandes FDP, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 2016; 297:91-103. [PMID: 26456521 DOI: 10.1016/j.bbr.2015.09.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 01/21/2023]
Abstract
Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.
Collapse
Affiliation(s)
- Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil
| | - Carolina Melo de Souza
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Francisco Diego Pinheiro Fernandes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Patrícia Rodrigues de Araújo
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil.
| |
Collapse
|
8
|
Huang J, Kodithuwakku ND, He W, Zhou Y, Fan W, Fang W, He G, Wu Q, Chu S, Li Y. The neuroprotective effect of a novel agent N2 on rat cerebral ischemia associated with the activation of PI3K/Akt signaling pathway. Neuropharmacology 2015; 95:12-21. [PMID: 25725335 DOI: 10.1016/j.neuropharm.2015.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is the third leading cause of death and the main reason for severe disabilities in the world today. N2, 4 - (2 - (1H - imidazol - 1 - yl) ethoxy) - 3 - methoxybenzoic acid is considered as a novel potent agent for cerebral ischemia due to its effect in preventing neuronal cell death after ischemic stroke. In the present study, we investigated the post-ischemic neuroprotective effect of N2 and its underlying mechanisms. Using a MCAO rat model, we found that N2 reversed brain infarct size, reduced cerebral edema and decreased the neurological deficit score significantly. Moreover, N2 diminished TUNEL positive cells, down-regulated bax expression and up-regulated bcl-2 expression notably. In addition, we evaluated the oxygen glucose deprivation/reoxygenation (OGD/R) injury induced neuron cell death in rat primary cortical neuron and assessed the neuroprotective effect of our drug. N2 increased cell viability, ameliorated neuron cell injury by decreasing LDH activity, and inhibited cell apoptotic rate while suppressed apoptotic signaling via inhibiting the bax expression, and elevating the bcl-2 expression. Furthermore, the neuroprotective effect of N2 was associated with the PI3K/Akt pathway which was proved by the use of PI3K inhibitor LY294002. The combination of our findings disclosed that N2 can be used as an effective neuroprotective agent for ischemic stroke due to its significant effect on preventing neuronal cell death after cerebral ischemia both in vivo and in vitro and the effectiveness was dose dependent.
Collapse
Affiliation(s)
- Jinru Huang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Nandani Darshika Kodithuwakku
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yi Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxiang Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Guangwei He
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Qiang Wu
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Shaoxing Chu
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|