1
|
Zhao W, Liu SL, Lin SS, Zhang Y, Yu C. Astrocytic P2X7 receptor in retrosplenial cortex drives electroacupuncture analgesia. Purinergic Signal 2024:10.1007/s11302-024-10043-w. [PMID: 39222236 DOI: 10.1007/s11302-024-10043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
P2X7 receptor (P2X7R) has been found to contribute to the peripheral mechanism of acupuncture analgesia (AA). However, whether it plays an important role in central mechanism remains unknown. In this study, we aimed to reveal the role of astrocytic P2X7R in retrosplenial cortex (RSC) in AA and provide new evidence for underlying the central mechanism of AA. We applied the chemogenetic receptors hM3Dq to stimulate or hM4Di to inhibit astrocytes ligand clozapine-N-oxide (CNO) following injection of adeno-associated virus (AAV) into the bilateral RSC, or pharmacologically intervened in the activity of the purinergic receptor P2X7R. Current data indicated that chemogenetic inhibition of astrocytes or injection of P2X7R agonist Bz-ATP in the bilateral RSC significantly reverses the analgesic effect of electroacupuncture (EA) in formalin tests while the bilateral injection of the P2X7R antagonist A438079 alleviated formalin-induced nociceptive behavior. Additionally, chemogenetic suppression of astrocytic P2X7R by injection of AAV in the bilateral RSC decreased hind paw flinches induced by formalin in the mice. These findings indicate the participation of both astrocytes and P2X7R in the RSC in EA analgesic. Moreover, P2X7R on astrocytes in the RSC appears to play a critical role in the ability of EA to attenuate formalin-induced pain responses in mice.
Collapse
Affiliation(s)
- Wei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Le Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Si Lin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Wang JH, Wu C, Lian YN, Cao XW, Wang ZY, Dong JJ, Wu Q, Liu L, Sun L, Chen W, Chen WJ, Zhang Z, Zhuo M, Li XY. Single-cell RNA sequencing uncovers the cell type-dependent transcriptomic changes in the retrosplenial cortex after peripheral nerve injury. Cell Rep 2023; 42:113551. [PMID: 38048224 DOI: 10.1016/j.celrep.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cheng Wu
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Yan-Na Lian
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi-Yue Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Jun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Wen-Juan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhi Zhang
- Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang-Yao Li
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK.
| |
Collapse
|
3
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Vasincu IM, Apotrosoaei M, Constantin S, Butnaru M, Vereștiuc L, Lupușoru CE, Buron F, Routier S, Lupașcu D, Taușer RG, Profire L. New ibuprofen derivatives with thiazolidine-4-one scaffold with improved pharmaco-toxicological profile. BMC Pharmacol Toxicol 2021; 22:10. [PMID: 33541432 PMCID: PMC7863240 DOI: 10.1186/s40360-021-00475-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. METHODS For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. RESULTS The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives (4a-n) are non-cytotoxic at 2 μg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. CONCLUSIONS The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d, a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions.
Collapse
Affiliation(s)
- Ioana-Mirela Vasincu
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Maria Apotrosoaei
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Sandra Constantin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Maria Butnaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Liliana Vereștiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Cătălina-Elena Lupușoru
- Pharmacology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
- Institute of Organic and Analytical Chemistry, Université d'Orléans - Pôle de chimie, Orléans, France
| | - Frederic Buron
- Institute of Organic and Analytical Chemistry, Université d'Orléans - Pôle de chimie, Orléans, France
| | - Sylvain Routier
- Institute of Organic and Analytical Chemistry, Université d'Orléans - Pôle de chimie, Orléans, France.
| | - Dan Lupașcu
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Roxana-Georgiana Taușer
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania
| | - Lenuța Profire
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, Iași, Romania.
| |
Collapse
|
5
|
Holschneider DP, Wang Z, Chang H, Zhang R, Gao Y, Guo Y, Mao J, Rodriguez LV. Ceftriaxone inhibits stress-induced bladder hyperalgesia and alters cerebral micturition and nociceptive circuits in the rat: A multidisciplinary approach to the study of urologic chronic pelvic pain syndrome research network study. Neurourol Urodyn 2020; 39:1628-1643. [PMID: 32578247 DOI: 10.1002/nau.24424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
AIMS Emotional stress plays a role in the exacerbation and development of interstitial cystitis/bladder pain syndrome (IC/BPS). Given the significant overlap of brain circuits involved in stress, anxiety, and micturition, and the documented role of glutamate in their regulation, we examined the effects of an increase in glutamate transport on central amplification of stress-induced bladder hyperalgesia, a core feature of IC/BPS. METHODS Wistar-Kyoto rats were exposed to water avoidance stress (WAS, 1 hour/day x 10 days) or sham stress, with subgroups receiving daily administration of ceftriaxone (CTX), an activator of glutamate transport. Thereafter, cystometrograms were obtained during bladder infusion with visceromotor responses (VMR) recorded simultaneously. Cerebral blood flow (CBF) mapping was performed by intravenous injection of [14 C]-iodoantipyrine during passive bladder distension. Regional CBF was quantified in autoradiographs of brain slices and analyzed in three dimensional reconstructed brains with statistical parametric mapping. RESULTS WAS elicited visceral hypersensitivity during bladder filling as demonstrated by a decreased pressure threshold and VMR threshold triggering the voiding phase. Brain maps revealed stress effects in regions noted to be responsive to bladder filling. CTX diminished visceral hypersensitivity and attenuated many stress-related cerebral activations within the supraspinal micturition circuit and in overlapping limbic and nociceptive regions, including the posterior midline cortex (posterior cingulate/anterior retrosplenium), somatosensory cortex, and anterior thalamus. CONCLUSIONS CTX diminished bladder hyspersensitivity and attenuated regions of the brain that contribute to nociceptive and micturition circuits, show stress effects, and have been reported to demonstrated altered functionality in patients with IC/BPS. Glutamatergic pharmacologic strategies modulating stress-related bladder dysfunction may be a novel approach to the treatment of IC/BPS.
Collapse
Affiliation(s)
| | - Zhuo Wang
- Departments of Psychiatry and Behavioral Sciences, Los Angeles, California
| | - Huiyi Chang
- Department of Urology, University of Southern California, Los Angeles, California.,Reeve-Irvine Research Center, University of California, Irvine, California
| | - Rong Zhang
- Department of Urology, University of Southern California, Los Angeles, California
| | - Yunliang Gao
- Department of Urology, University of Southern California, Los Angeles, California.,Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumei Guo
- Departments of Psychiatry and Behavioral Sciences, Los Angeles, California
| | - Jackie Mao
- Department of Urology, University of Southern California, Los Angeles, California
| | - Larissa V Rodriguez
- Department of Urology, University of Southern California, Los Angeles, California
| |
Collapse
|