1
|
Arfeen M, Dhaked DK, Mani V. Multipotent Effect of Clozapine on Lipopolysaccharide-Induced Acetylcholinesterase, Cyclooxygenase-2,5-Lipoxygenase, and Caspase-3: In Vivo and Molecular Modeling Studies. Molecules 2025; 30:266. [PMID: 39860136 PMCID: PMC11767763 DOI: 10.3390/molecules30020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD. Structure-based virtual screening of US-FDA-approved molecules from the ZINC15 database identified clozapine (CLOZ) as the dual inhibitor of COX-2 and AChE, with significant binding affinity. Further molecular docking of CLOZ in the active site of LOX and Caspase-3 also showed significant binding potential. Further, the results from molecular docking were validated using molecular dynamics simulation (MDS) studies, confirming the results from molecular docking. The results from MDS showed good binding potential and interactions with key residues. The CLOZ was further assessed using lipopolysaccharide (LPS)-challenged rats treated for thirty days at doses of 5 and 10 mg/kg, p.o. The results demonstrated modulation of COX-2, 5-LOX, AChE, Caspase-3, and MDA in LPS-induced brains. Additionally, the expression level of IL-10 was also measured. Our results showed a significant decrease in the levels of COX-2, 5-LOX, AChE, Caspase-3, and MDA. Our results also showed a significant decrement in the pro-inflammatory markers NF-κB, TNF-α, and IL-6 and an improvement in the levels of anti-inflammatory markers IL-10 and TGF-β1. Overall, the findings indicate that CLOZ has potential for neuroprotective effects against LPS-treated rats and can be explored.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata 700054, India;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
2
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Gao Z, Li M, Yao F, Xia X, Duan T, Meng J, Huang Y, He Y, Saro A, Huang J. Valdecoxib Protects against Cell Apoptosis Induced by Endoplasmic Reticulum Stress via the Inhibition of PERK-ATF4-CHOP Pathway in Experimental Glaucoma. Int J Mol Sci 2022; 23:12983. [PMID: 36361772 PMCID: PMC9657191 DOI: 10.3390/ijms232112983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to investigate the effects of valdecoxib on the retina in retinal ischemia-reperfusion injury (IRI) and R28 cells following oxygen-glucose deprivation/recovery (OGD/R) injury, as well as the underlying mechanisms. Immunofluorescence and Cell Counting Kit-8 (CCK-8) analyses were used to identify the proper timepoint and concentration of valdecoxib's protective effect on the R28 cells in the OGD/R model. Hematoxylin-eosin (HE) staining and immunofluorescence were used to explore valdecoxib's effect on the retina and retina ganglion cell (RGC) in IRI. Cell apoptosis was determined by a TUNEL Apoptosis Detection Kit and Annexin V-FITC/PI flow cytometry. The expression levels of p-PERK, transcription factor 4 (ATF4), GRP78, CHOP, cleaved caspase 3, bax and bcl-2 were measured by Western blot analyses. The valdecoxib protected the R28 cells from OGD/R injury by decreasing the cell apoptosis rate, and it exerted a protective effect on retinas in I/R injury by inhibiting RGC apoptosis. The valdecoxib pretreatment reversed the expression of p-PERK, ATF4, CHOP, GRP78, cleaved caspase 3 and bax induced by the glaucomatous model. Meanwhile, the CCT020312 reversed the valdecoxib's anti-apoptosis effect by activating PERK-ATF4-CHOP pathway-mediated endoplasmic reticulum (ER) stress. These findings suggest that valdecoxib protects against glaucomatous injury by inhibiting ER stress-induced apoptosis via the inhibition of the PERK-ATF4-CHOP pathway.
Collapse
Affiliation(s)
- Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Fei Yao
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008, China
| | - Tianqi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Ye He
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008, China
| | - Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
6
|
Leukotriene Signaling as a Target in α-Synucleinopathies. Biomolecules 2022; 12:biom12030346. [PMID: 35327537 PMCID: PMC8944962 DOI: 10.3390/biom12030346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are two common types of α-synucleinopathies and represent a high unmet medical need. Despite diverging clinical manifestations, both neurodegenerative diseases share several facets of their complex pathophysiology. Apart from α-synuclein aggregation, an impairment of mitochondrial functions, defective protein clearance systems and excessive inflammatory responses are consistently observed in the brains of PD as well as DLB patients. Leukotrienes are lipid mediators of inflammatory signaling traditionally known for their role in asthma. However, recent research advances highlight a possible contribution of leukotrienes, along with their rate-limiting synthesis enzyme 5-lipoxygenase, in the pathogenesis of central nervous system disorders. This review provides an overview of in vitro as well as in vivo studies, in summary suggesting that dysregulated leukotriene signaling is involved in the pathological processes underlying PD and DLB. In addition, we discuss how the leukotriene signaling pathway could serve as a future drug target for the therapy of PD and DLB.
Collapse
|
7
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
8
|
Wang W, Wei C, Quan M, Li T, Jia J. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior. J Alzheimers Dis 2021; 78:127-137. [PMID: 32925042 DOI: 10.3233/jad-200397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is one of the most common behavioral and psychological symptoms in people with Alzheimer's disease (AD). To date, however, the molecular mechanisms underlying the clinical association between depression and AD remained elusive. OBJECTIVE Here, we study the relationship between memory impairment and depressive-like behavior in AD animal model, and investigate the potential mechanisms. METHODS Male SD rats were administered amyloid-β oligomers (AβOs) by intracerebroventricular injection, and then the depressive-like behavior, neuroinflammation, oxidative stress, and the serotonergic system were measured in the brain. Sulforaphane (SF), a compound with dual capacities of anti-inflammation and anti-oxidative stress, was injected intraperitoneally to evaluate the therapeutic effect. RESULTS The results showed that AβOs induced both memory impairment and depressive-like behavior in rats, through the mechanisms of inducing neuroinflammation and oxidative stress, and impairing the serotonergic axis. SF could reduce both inflammatory factors and oxidative stress parameters to protect the serotonergic system and alleviate memory impairment and depressive-like behavior in rats. CONCLUSION These results provided insights into the biological mechanisms underlying the clinical link between depressive disorder and AD, and offered new drug options for the treatment of depressive symptoms in dementia.
Collapse
Affiliation(s)
- Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
| |
Collapse
|
9
|
Systematic review and meta-analysis on the role of mitochondrial cytochrome c oxidase in Alzheimer's disease. Acta Neuropsychiatr 2021; 33:55-64. [PMID: 33256871 DOI: 10.1017/neu.2020.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was designed to test the hypothesis that there is a reduction in the activity of the enzyme cytochrome c oxidase (Cox) in Alzheimer's disease (AD). METHODS Systematic review of literature and meta-analysis were used with data obtained from the PubMed, Scopus, MEDLINE, Lilacs, Eric and Cochrane. The keywords were Alzheimer's AND Cox AND mitochondria; Alzheimer's AND Cox AND mitochondria; Alzheimer's AND complex IV AND mitochondria. A total of 1372 articles were found, 23 of them fitting the inclusion criteria. The data were assembled in an Excel spreadsheet and analysed using the RevMan software. A random effects model was adopted to the estimative of the effect. RESULTS The data shows a significant decrease in the activity of the Cox AD patients and animal models. CONCLUSION Cox enzyme may be an important molecular component involved in the mechanisms underlying AD. Therefore, this enzyme may represent a possible new biomarker for the disease as a complementary diagnosis and a new treatment target for AD.
Collapse
|
10
|
Duggal P, Jadaun KS, Siqqiqui EM, Mehan S. Investigation of Low Dose Cabazitaxel Potential as Microtubule Stabilizer in Experimental Model of Alzheimer's Disease: Restoring Neuronal Cytoskeleton. Curr Alzheimer Res 2020; 17:601-615. [PMID: 33030130 DOI: 10.2174/1567205017666201007120112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neuronal Microtubule (MT) tau protein, providing cytoskeleton to neuronal cells, plays a vital role, including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediated MT destabilization results in axonopathy, additionally neurotransmitter deficit and ultimately causing Alzheimer's disease. Pre-clinically, streptozotocin (3mg/kg, 10μl/ unilateral, ICV) stereotaxically mimics the behavioral and neurochemical alterations similar to Alzheimer's tau pathology resulting in MT assembly defects further lead to neuropathological cascades. OBJECTIVE Clinically approved medications such as Donepezil (DNP), rivastigmine, and Memantine (MEM) are responsible for symptomatic care only, but there is no specific pharmacological intervention that directly interacts with the neuronal microtubule destabilization. METHODS The current study focused on the involvement of anti-cancer agent microtubule stabilizer cabazitaxel at a low dose (0.5 and 2 mg/kg) alone and in combination with standard drugs DNP (5 mg/kg), MEM (10 mg/kg) and microtubule stabilizer Epothilone D (EpoD) (3 mg/kg) in the prevention of intracerebroventricular streptozotocin (ICV-STZ) intoxicated microtubule-associated tau protein hyperphosphorylation. RESULTS Chronic treatment of CBZ at a low dose alone and in combination with standard drugs showing no side effect and significantly improve the cognitive impairment, neurochemical alterations along with reducing the level of hyperphosphorylated tau by preventing the breakdown of the neuronal cytoskeleton, respectively. CONCLUSION The above findings suggested that CBZ at low dose show neuroprotective effects against ICV-STZ induced microtubule-associated tau protein hyperphosphorylation in rats and may be an effective agent for the preventive treatment of AD.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kuldeep S Jadaun
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz M Siqqiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
11
|
Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer's disease. Brain Behav Immun 2020; 88:844-855. [PMID: 32222525 DOI: 10.1016/j.bbi.2020.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
5-lipoxygenase (ALOX5) is an enzyme involved in arachidonic acid (AA) metabolism, a metabolic pathway in which cysteinyl leukotrienes (CysLTs) are the resultant metabolites. Both ALOX5 and CysLTs are clinically significant in a number of inflammatory diseases, such as in asthma and allergic rhinitis, and drugs antagonizing the effect of these molecules have long been successfully used to counter these diseases. Interestingly, recent advances in 'neuroinflammation' research has led to the discovery of several novel inflammatory pathways regulating many cerebral pathologies, including the ALOX5 pathway. By means of pharmacological and genetic studies, both ALOX5 and CysLTs receptors have been shown to be involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative/neurological diseases, such as in Parkinson's disease, multiple sclerosis, and epilepsy. In both transgenic and sporadic models of AD, it has been shown that the levels of ALOX5/CysLTs are elevated, and that genetic/pharmacological interventions of these molecules can alleviate AD-related behavioral and pathological conditions. Clinical relevance of these molecules has also been found in AD brain samples. In this review, we aim to summarize such important findings on the role of ALOX5/CysLTs in AD pathophysiology, from both the cellular and the molecular aspects, and also discuss the potential of their blockers as possible therapeutic choices to curb AD-related conditions.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Arijit Ghosh
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jingran Lin
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Chunteng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yining Pan
- Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Hao Hong
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| | - Susu Tang
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
13
|
Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer's disease. Neurol Sci 2020; 41:2081-2093. [PMID: 32281039 DOI: 10.1007/s10072-020-04369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease is a complex multifaceted neurodegenerative disorder. It is characterized by the deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles leading to progressive dementia and death in aged adult population. Recent emerging research has highlighted a potential pharmacological role of 5-lipoxyenase-cysteinyl leukotriene pathway in molecular pathogenesis of Alzheimer's disease. OBJECTIVE Although cysteinyl leukotrienes and their receptors have a major clinical role in chronic respiratory inflammation, their roles in chronic neuroinflammation in Alzheimer's disease need a detailed and careful exploration. RESULTS AND CONCLUSION This review article highlights a novel role of cysteinyl leukotrienes and their receptors in pathophysiology of Alzheimer's disease in order to understand the underlying molecular mechanism. In addition, it summarizes the recent advances in various pre-clinical and clinical strategies used to modulate this pathway for therapeutic targeting of Alzheimer's disease.
Collapse
|
14
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
15
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
16
|
Fayez AM, Elnoby AS, Bahnasawy NH, Hassan O. Neuroprotective effects of zafirlukast, piracetam and their combination on L-Methionine-induced vascular dementia in rats. Fundam Clin Pharmacol 2019; 33:634-648. [PMID: 31001898 DOI: 10.1111/fcp.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Vascular dementia is considered a vascular cognitive impairment disease caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress and endothelial dysfunction are the main pathogenic factors in vascular dementia. This current study aims to determine the possible neuroprotective effects of zafirlukast, piracetam and the combination of piracetam and zafirlukast on L-methionine-induced vascular dementia in rats. Male Wistar albino rats were divided into five groups. Group I was the normal control, and group II received L-methionine (1700 mg/kg, P.O.) for 32 days. The remaining groups received zafirlukast (20 mg/kg, P.O.), piracetam (600 mg/kg, P.O.) or their combination (zafirlukast 20 mg/kg + piracetam 600 mg/kg, P.O.) for 32 days after L-methionine administration. Afterwards, the cognitive and memory performances of the rats were investigated using the novel object recognition (NOR) test; rats were then sacrificed for histopathological and biochemical analyses. L-methionine-induced vascular dementia altered rats' behaviours and the brain contents of different neurotransmitters and acetylcholinesterase activity while increasing levels of oxidative stress and causing notable histopathological alterations in brain tissues. The treatment of vascular dementia with zafirlukast and the combination improved neurochemical, behavioural and histological alterations to a comparable level to those of piracetam. Thus, zafirlukast, piracetam and the combination of both drugs can be considered as potential therapeutic strategies for the treatment of vascular dementia induced by L-methionine. To the best of our knowledge, this study is the first to explore the neuroprotective effects of zafirlukast and piracetam on L-methionine-induced vascular dementia.
Collapse
Affiliation(s)
- Ahmed M Fayez
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Ahmed S Elnoby
- Clinical Pharmacy Department, Children's Cancer Hospital Egypt, 57357, Cairo, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Nada H Bahnasawy
- Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Omar Hassan
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| |
Collapse
|
17
|
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24:505-516. [DOI: 10.1016/j.drudis.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
|
18
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Neuropsychiatric Events Associated with Leukotriene-Modifying Agents: A Systematic Review. Drug Saf 2018; 41:253-265. [PMID: 29076063 DOI: 10.1007/s40264-017-0607-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Leukotriene-modifying agents (LTMAs) including montelukast, zafirlukast, and zileuton are approved by the US Food and Drug Administration (FDA) for the treatment of asthma and allergic rhinitis. Various neuropsychiatric events (NEs) have been reported; however, the evidence of the association is conflicting. This systematic review investigates the association between NEs and LTMAs by assessing the relevant published literature. METHODS PubMed, EMBASE, MEDLINE, and Cochrane Library were searched using keywords. Studies designed to investigate the association were eligible for inclusion without restriction to any study design or language. The primary outcome was defined as suicidal conditions, while secondary outcomes included all other NEs. RESULTS Thirty-three studies were included for a narrative review. Four observational studies did not find a significant association, while ten pharmacovigilance studies using different global databases detected the signals. Notably, some studies suggest that the FDA warning issued in 2008 might have influenced the reporting rate of NEs as a result of increased awareness. LIMITATIONS The risk of NEs was not quantified, because of the lack of randomized controlled trials and observational studies investigating the association. CONCLUSION Many pharmacovigilance studies have been conducted to determine the association between NEs and LTMAs, but there is limited evidence from observational studies. High-quality epidemiological studies should be conducted to evaluate the association and quantify the risk, not only in children, but also in adults.
Collapse
|
20
|
Mhillaj E, Morgese MG, Tucci P, Furiano A, Luongo L, Bove M, Maione S, Cuomo V, Schiavone S, Trabace L. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid β-treated Rats. Neuroscience 2018; 372:58-73. [PMID: 29306052 DOI: 10.1016/j.neuroscience.2017.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Recent findings suggest that soluble forms of amyloid-β (sAβ) peptide contribute to synaptic and cognitive dysfunctions in early stages of Alzheimer's disease (AD). On the other hand, neuroinflammation and cyclooxygenase-2 (COX-2) enzyme have gained increased interest as key factors involved early in AD, although the signaling pathways and pathophysiologic mechanisms underlying a link between sAβ-induced neurotoxicity and inflammation are still unclear. Here, we investigated the effects of selective COX-2 enzyme inhibition on neuropathological alterations induced by sAβ administration in rats. To this purpose, animals received an intracerebroventricular (icv) injection of predominantly monomeric forms of sAβ and, 7 days after, behavioral as well as biochemical parameters and neurotransmitter alterations were evaluated. During this period, rats also received a sub-chronic treatment with celecoxib. Biochemical results demonstrated that icv sAβ injection significantly increased both COX-2 and pro-inflammatory cytokines expression in the hippocampus (Hipp) of treated rats. In addition, the number of hypertrophic microglial cells and astrocytes were upregulated in sAβ-treated group. Interestingly, rats treated with sAβ showed long-term memory deficits, as confirmed by a significant reduction of discrimination index in the novel object recognition test, along with reduced brain-derived neurotrophic factor expression and increased noradrenaline levels in the Hipp. Systemic administration of celecoxib prevented behavioral dysfunctions, as well as biochemical and neurotransmitter alterations. In conclusion, our results suggest that sAβ neurotoxicity might be associated to COX-2-mediated inflammatory pathways and that early treatment with selective COX-2 inhibitor might provide potential remedies to counterbalance the sAβ-induced effects.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Morgese
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Furiano
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Maria Bove
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sabatino Maione
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Vincenzo Cuomo
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Schiavone
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
21
|
Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. Food Chem Toxicol 2017; 111:432-444. [PMID: 29170048 DOI: 10.1016/j.fct.2017.11.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 01/20/2023]
Abstract
Heavy metals are reported as neurodegenerative disorders progenitor. They play a role in the precipitation of abnormal β-amyloid protein and hyper-phosphorylated tau, the main hallmarks of Alzheimer's disease (AD). The present study aimed to validate the heavy metals-induced Alzheimer's-like disease in rats as an experimental model of AD and explore the therapeutic effect of berberine via tracking its effect on the oxidative stress-inflammatory pathway. Alzheimer's-like disease was induced in rats orally by a mixture of aluminium, cadmium and fluoride for three months, followed by berberine treatment for another one month. Berberine significantly improved the cognitive behaviors in Morris water maze test and offered a protective effect against heavy metals-induced memory impairment. Docking results showed that berberine inhibited AChE, COX-2 and TACE. Matching with in silico study, berberine downregulated the AChE expression and inhibited its activity in the brain tissues. Also, it normalized the production of TNF- α, IL-12, IL-6 and IL-1β. Moreover, it evoked the production of antioxidant Aβ40 and inhibited the formation of Aβ42, responsible for the aggregations of amyloid-β plaques. Histopathological examination confirmed the neuroprotective effect of berberine. The present data advocate the possible beneficial effect of berberine as therapeutic modality for Alzheimer's disease via its antiinflammatory/antioxidant mechanism.
Collapse
|
22
|
Omori C, Motodate R, Shiraki Y, Chiba K, Sobu Y, Kimura A, Nakaya T, Kondo H, Kurumiya S, Tanaka T, Yamamoto K, Nakajima M, Suzuki T, Hata S. Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease. Nutr Neurosci 2016; 20:538-546. [PMID: 27329428 DOI: 10.1080/1028415x.2016.1199114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The activities of mitochondrial enzymes, which are essential for neural function, decline with age and in age-related disease. In particular, the activity of cytochrome c oxidase (COX/complex IV) decreases in patients with Alzheimer's disease (AD). COX, a mitochondrial inner membrane protein complex that contains heme, plays an essential role in the electron transport chain that generates ATP. Heme synthesis begins with 5-aminolevulinic acid (5-ALA) in mitochondria. 5-ALA synthetase is the rate-limiting enzyme in heme synthesis, suggesting that supplementation with 5-ALA might help preserve mitochondrial activity in the aged brain. We administered a diet containing 5-ALA to triple-transgenic AD (3xTg-AD) model mice for 6 months, starting at 3 months of age. COX activity and protein expression, as well as mitochondrial membrane potential, were significantly higher in brains of 5-ALA-fed mice than in controls. Synaptotagmin protein levels were also significantly higher in 5-ALA-fed mice, suggesting improved preservation of synapses. Although brain Aβ levels tended to decrease in 5-ALA-fed mice, we observed no other significant changes in other biochemical and pathological hallmarks of AD. Nevertheless, our study suggests that daily oral administration of 5-ALA could preserve mitochondrial enzyme activities in the brains of aged individuals, thereby contributing to the preservation of neural activity.
Collapse
Affiliation(s)
- Chiori Omori
- a Department of Integrated Bioscience , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa 277-8562 , Japan.,b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Rika Motodate
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Yuzuha Shiraki
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Kyoko Chiba
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Yuriko Sobu
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Ayano Kimura
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Tadashi Nakaya
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Hikaru Kondo
- c SBI Pharmaceuticals Co., Ltd , Tokyo 106-6020 , Japan
| | | | - Toru Tanaka
- c SBI Pharmaceuticals Co., Ltd , Tokyo 106-6020 , Japan
| | - Kazuo Yamamoto
- a Department of Integrated Bioscience , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa 277-8562 , Japan
| | | | - Toshiharu Suzuki
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Saori Hata
- b Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| |
Collapse
|