1
|
Alcantara E, Doyle MR, Ortez CA, Ilustrisimo A, Stromberg B, Barkley-Levenson AM, Palmer AA. Investigating the Role of Glyoxalase 1 as a Therapeutic Target for Cocaine and Oxycodone Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630123. [PMID: 39763915 PMCID: PMC11703167 DOI: 10.1101/2024.12.23.630123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Methylglyoxal (MG) is an endogenously produced non-enzymatic side product of glycolysis that acts as a partial agonist at GABAA receptors. MG that is metabolized by the enzyme glyoxalase-1 (GLO1). Inhibition of GLO1 increases methylglyoxal levels, and has been shown to modulate various behaviors, including decreasing seeking of cocaine-paired cues and ethanol consumption. The goal of these studies was to determine if GLO1 inhibition could alter cocaine- or oxycodone-induced locomotor activation and/or conditioned place preference (CPP) to cocaine or oxycodone. We used both pharmacological and genetic manipulations of GLO1 to address this question. Administration of the GLO1 inhibitor s-bromobenzylglutathione cyclopentyl diester (pBBG) did not alter the locomotor response to cocaine or oxycodone. Additionally, pBBG had no significant effect on place preference for cocaine or oxycodone. Genetic knockdown of Glo1, which is conceptually similar to pharmacological inhibition, did not have any significant effects on cocaine place preference, nor did Glo1 overexpression affect locomotor response to cocaine. In summary, our results show that neither pharmacological nor genetic manipulations of GLO1 influence locomotor response or CPP to cocaine or oxycodone.
Collapse
Affiliation(s)
- Elizabeth Alcantara
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Current address: Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Authors contributed equally
| | - Michelle R. Doyle
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Authors contributed equally
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Clara A. Ortez
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Anne Ilustrisimo
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bloom Stromberg
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Amanda M. Barkley-Levenson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Current address: Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, Chitre AS, Munro D, Mohammadi P, Carrette LLG, George O, Palmer AA, McVicker G, Telese F. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci 2023; 26:1868-1879. [PMID: 37798411 PMCID: PMC10620093 DOI: 10.1038/s41593-023-01452-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.
Collapse
Affiliation(s)
- Jessica L Zhou
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hai-Ri Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Graham McVicker
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Francesca Telese
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
de Guglielmo G, Simpson S, Kimbrough A, Conlisk D, Baker R, Cantor M, Kallupi M, George O. Voluntary and forced exposure to ethanol vapor produces similar escalation of alcohol drinking but differential recruitment of brain regions related to stress, habit, and reward in male rats. Neuropharmacology 2023; 222:109309. [PMID: 36334765 PMCID: PMC10022477 DOI: 10.1016/j.neuropharm.2022.109309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
A major limitation of the most widely used current animal models of alcohol dependence is that they use forced exposure to ethanol including ethanol-containing liquid diet and chronic intermittent ethanol (CIE) vapor to produce clinically relevant blood alcohol levels (BAL) and addiction-like behaviors. We recently developed a novel animal model of voluntary induction of alcohol dependence using ethanol vapor self-administration (EVSA). However, it is unknown whether EVSA leads to an escalation of alcohol drinking per se, and whether such escalation is associated with neuroadaptations in brain regions related to stress, reward, and habit. To address these issues, we compared the levels of alcohol drinking during withdrawal between rats passively exposed to alcohol (CIE) or voluntarily exposed to EVSA and measured the number of Fos+ neurons during acute withdrawal (16 h) in key brain regions important for stress, reward, and habit-related processes. CIE and EVSA rats exhibited similar BAL and similar escalation of alcohol drinking and motivation for alcohol during withdrawal. Acute withdrawal from EVSA and CIE recruited a similar number of Fos+ neurons in the Central Amygdala (CeA), however, acute withdrawal from EVSA recruited a higher number of Fos+ neurons in every other brain region analyzed compared to acute withdrawal from CIE. In summary, while the behavioral measures of alcohol dependence between the voluntary (EVSA) and passive (CIE) model were similar, the recruitment of neuronal ensembles during acute withdrawal was very different. The EVSA model may be particularly useful to unveil the neuronal networks and pharmacology responsible for the voluntary induction and maintenance of alcohol dependence and may improve translational studies by providing preclinical researchers with an animal model that highlights the volitional aspects of alcohol use disorder.
Collapse
Affiliation(s)
| | - Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47906, USA
| | - Dana Conlisk
- Univ. Bordeaux, INSERM, Neurocenter Magendie, Psychobiology of Drug Addiction Group, U1215, F-33000, Bordeaux, France
| | - Robert Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maxwell Cantor
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Harp SJ, Martini M, Rosenow W, Mesner LD, Johnson H, Farber CR, Rissman EF. Fentanyl-induced acute and conditioned behaviors in two inbred mouse lines: Potential role for Glyoxalase. Physiol Behav 2022; 243:113630. [PMID: 34710466 PMCID: PMC8713069 DOI: 10.1016/j.physbeh.2021.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
An increase in opioid-overdose deaths was evident before the COVID-19 pandemic, and has escalated since its onset. Fentanyl, a highly potent synthetic opioid, is the primary driver of these recent trends. The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains. We validated differences in two genes: suppressor APC domain containing 1 (Sapcd1) and Glyoxalase 1 (Glo1), with quantitative PCR on RNA from the nucleus accumbens and prefrontal cortex (). In both regions A/J mice had significantly higher expression of both genes than did C57BL/6 J. In prefrontal cortex, fentanyl treatment decreased Glo1 mRNA. Glyoxalase 1 catalyzes the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, is associated with anxiety and activity levels, and its inhibition reduces alcohol intake. We suggest that future studies assess the ability of Glo1 and related metabolites to modify opioid intake.
Collapse
Affiliation(s)
- Samuel J. Harp
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Mariangela Martini
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Will Rosenow
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Larry D. Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Hugh Johnson
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA
| | - Charles R. Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Emilie F. Rissman
- Center for Human Health and the Environment Program in Genetics, North Carolina State University, Raleigh, NC USA,Corresponding author: Dr. E.F. Rissman, Department of Biological Sciences, Thomas Hall, North Carolina State University, Raleigh, NC 27695, Phone: (919) 515-5807, FAX: (919) 515-
| |
Collapse
|
5
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
6
|
Barkley-Levenson AM, Lee A, Palmer AA. Genetic and Pharmacological Manipulations of Glyoxalase 1 Mediate Ethanol Withdrawal Seizure Susceptibility in Mice. Brain Sci 2021; 11:127. [PMID: 33478138 PMCID: PMC7835754 DOI: 10.3390/brainsci11010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) hyperexcitability is a clinically significant feature of acute ethanol withdrawal. There is evidence for a genetic contribution to withdrawal severity, but specific genetic risk factors have not been identified. The gene glyoxalase 1 (Glo1) has been previously implicated in ethanol consumption in mice, and GLO1 inhibition can attenuate drinking in mice and rats. Here, we investigated whether genetic and pharmacological manipulations of GLO1 activity can also mediate ethanol withdrawal seizure severity in mice. Mice from two transgenic lines overexpressing Glo1 on different genetic backgrounds (C57BL/6J (B6) and FVB/NJ (FVB)) were tested for handling-induced convulsions (HICs) as a measure of acute ethanol withdrawal. Following an injection of 4 g/kg alcohol, both B6 and FVB mice overexpressing Glo1 showed increases in HICs compared to wild-type littermates, though only the FVB line showed a statistically significant difference. We also administered daily ethanol injections (2 g/kg + 9 mg/kg 4-methylpyrazole) to wild-type B6 mice for 10 days and tested them for HICs on the 10th day following treatment with either a vehicle or a GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG)). Treatment with pBBG reduced HICs, although this effect was only statistically significant following two 10-day cycles of ethanol exposure and withdrawal. These results provide converging genetic and pharmacological evidence that GLO1 can mediate ethanol withdrawal seizure susceptibility.
Collapse
Affiliation(s)
- Amanda M. Barkley-Levenson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Amy Lee
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Ruan QT, Yazdani N, Reed ER, Beierle JA, Peterson LP, Luttik KP, Szumlinski KK, Johnson WE, Ash PEA, Wolozin B, Bryant CD. 5' UTR variants in the quantitative trait gene Hnrnph1 support reduced 5' UTR usage and hnRNP H protein as a molecular mechanism underlying reduced methamphetamine sensitivity. FASEB J 2020; 34:9223-9244. [PMID: 32401417 DOI: 10.1096/fj.202000092r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
We previously identified a 210 kb region on chromosome 11 (50.37-50.58 Mb, mm10) containing two protein-coding genes (Hnrnph1, Rufy1) that was necessary for reduced methamphetamine-induced locomotor activity in C57BL/6J congenic mice harboring DBA/2J polymorphisms. Gene editing of a small deletion in the first coding exon supported Hnrnph1 as a quantitative trait gene. We have since shown that Hnrnph1 mutants also exhibit reduced methamphetamine-induced reward, reinforcement, and dopamine release. However, the quantitative trait variants (QTVs) that modulate Hnrnph1 function at the molecular level are not known. Nine single nucleotide polymorphisms and seven indels distinguish C57BL/6J from DBA/2J within Hnrnph1, including four variants within the 5' untranslated region (UTR). Here, we show that a 114 kb introgressed region containing Hnrnph1 and Rufy1 was sufficient to cause a decrease in MA-induced locomotor activity. Gene-level transcriptome analysis of striatal tissue from 114 kb congenics vs Hnrnph1 mutants identified a nearly perfect correlation of fold-change in expression for those differentially expressed genes that were common to both mouse lines, indicating functionally similar effects on the transcriptome and behavior. Exon-level analysis (including noncoding exons) revealed decreased 5' UTR usage of Hnrnph1 and immunoblot analysis identified a corresponding decrease in hnRNP H protein in 114 kb congenic mice. Molecular cloning of the Hnrnph1 5' UTR containing all four variants (but none of them individually) upstream of a reporter induced a decrease in reporter signal in both HEK293 and N2a cells, thus, identifying a set of QTVs underlying molecular regulation of Hnrnph1.
Collapse
Affiliation(s)
- Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Eric R Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Lucy P Peterson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - William E Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|