1
|
The antiepileptic drug lacosamide and memory - A preclinial study. Epilepsy Behav 2021; 125:108401. [PMID: 34775245 DOI: 10.1016/j.yebeh.2021.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Lacosamide (LC) belongs to a new generation of antiepileptic drugs (AEDs) and demonstrates unique mechanism of action. The drug also shows neuroprotective activity on the hippocampus. In this study, the impact of LC on learning processes was assessed. METHODS Adult male Wistar rats (n = 40) were used. Lacosamide was administered p.o. as a single (25 mg/kg or 75 mg/kg) or repeated doses (75 mg/kg). The effect of the drug was assessed in the Morris water maze (spatial memory) and the passive avoidance (PA) (emotional memory). RESULTS Lacosamide administered at a single dose or repeatedly did not impair spatial memory in Morris water maze. Higher swimming speed was observed in rats after administration of acute doses of LC. In PA, the disturbance of emotional memory was observed only after the single high dose of LC. CONCLUSION Lacosamide does not impair memory and learning processes. The emotional memory impairment observed after the acute high dose appears to be temporary and did not occur after repeated administration.
Collapse
|
2
|
Szewczyk A, Zagaja M, Szala-Rycaj J, Maj M, Andres-Mach M. Effect of Lacosamide and Ethosuximide Chronic Treatment on Neural Precursor Cells and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Brain Sci 2021; 11:brainsci11081014. [PMID: 34439633 PMCID: PMC8392532 DOI: 10.3390/brainsci11081014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Seizures in about 40% of patients with epilepsy fail to respond to anti-seizure medication (ASM) and may lead to uncontrolled and prolonged seizures often inducing status epilepticus (SE). The aim of the study was to evaluate the impact of a long-term treatment with two different generation ASMs: ethosuximide (ETS, a classic ASM) and lacosamide (LCM, a 3rd generation ASM) on neural stem cells’ (NSCs’) proliferation and learning and memory functions after pilocarpine (PILO)-induced SE in mice. The following drugs were used: LCM (10 mg/kg), ETS (20 mg/kg), and PILO (300 mg/kg). Cell counting was done using confocal microscope and ImageJ software. Cognitive functions were evaluated with the Morris water maze (MWM) test. The level of several selected neurometabolites was measured with magnetic resonance spectroscopy (MRS). Obtained results indicated no significant impact of ETS treatment on the neurogenesis process in PILO mice. Interestingly, LCM significantly decreased the total amount of newborn neurons. The MWM test indicated no significant changes in the time and distance traveled by the ETS and LCM groups compared to PILO control mice, although all measured parameters were more favorable for the PILO mice treated with ASM. Conclusions: The presented results show that long term treatment with LCM and ETS seems to be safe for the cognitive functions and the proper course of neurogenesis in the mouse PILO-induced SE model, although one should remember that LCM administered chronically may act to reduce new neurons’ formation.
Collapse
Affiliation(s)
- Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| |
Collapse
|
3
|
Demir M, Akarsu EO, Dede HO, Bebek N, Yıldız SO, Baykan B, Akkan AG. Investigation of the Roles of New Antiepileptic Drugs and Serum BDNF Levels in Efficacy and Safety Monitoring and Quality of Life: A Clinical Research. ACTA ACUST UNITED AC 2021; 15:49-63. [PMID: 30864528 PMCID: PMC7497568 DOI: 10.2174/1574884714666190312145409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Objective: We aimed to determine the therapeutic drug monitoring (TDM) features and the relation to Brain-Derived Neurotrophic Factor (BDNF) of frequently used new antiepileptic drugs (NADs) including lamotrigine (LTG), oxcarbazepine (OXC), zonisamide (ZNS) and lacosamide (LCM). Moreover, we investigated their effect on the quality of life (QoL). Methods: Eighty epileptic patients who had been using the NADs, and thirteen healthy participants were included in this cross-sectional study. The participants were randomized into groups. The QOLIE-31 test was used for the assessment of QoL. We also prepared and applied “Safety Test”. HPLC method for TDM, and ELISA method for BDNF measurements were used consecutively. Results: In comparison to healthy participants, epileptic participants had lower marriage rate (p=0.049), education level (p˂0.001), alcohol use (p=0.002). BDNF levels were higher in patients with focal epilepsy (p=0.013) and in those with higher education level (p=0.016). There were negative correlations between serum BDNF levels and serum ZNS levels (p=0.042) with LTG-polytherapy, serum MHD levels (a 10-monohydroxy derivative of OXC, p=0.041) with OXC-monotherapy. There was no difference in BDNF according to monotherapy-polytherapy, drug-resistant groups, regarding seizure frequency. There was a positive correlation between total health status and QoL (p˂0.001). QOLIE-31 overall score (OS) was higher in those with OXC-monotherapy (76.5±14.5). OS (p˂0.001), seizure worry (SW, p=0.004), cognition (C, p˂0.001), social function (SF, p˂0.001) were different in the main groups. Forgetfulness was the most common unwanted effect. Conclusion: While TDM helps the clinician to use more effective and safe NADs, BDNF may assist in TDM for reaching the therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Meral Demir
- Department of Medical and Clinical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey.,Department of Medical and Clinical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University, Cerrahpasa Street / Fatih 34093, Istanbul, Turkey
| | - Emel O Akarsu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Hava O Dede
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Sevda O Yıldız
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Ahmet G Akkan
- Department of Medical and Clinical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University, Cerrahpasa Street / Fatih 34093, Istanbul, Turkey
| |
Collapse
|
4
|
Effects of Lacosamide Treatment on Epileptogenesis, Neuronal Damage and Behavioral Comorbidities in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22094667. [PMID: 33925082 PMCID: PMC8124899 DOI: 10.3390/ijms22094667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.
Collapse
|
5
|
Evolving targets for anti-epileptic drug discovery. Eur J Pharmacol 2020; 887:173582. [DOI: 10.1016/j.ejphar.2020.173582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
|
6
|
Evaluation of the impact of compound C11 a new anticonvulsant candidate on cognitive functions and hippocampal neurogenesis in mouse brain. Neuropharmacology 2019; 163:107849. [PMID: 31706991 DOI: 10.1016/j.neuropharm.2019.107849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Searching for the new and effective anticonvulsants in our previous study we developed a new hybrid compound C-11 derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamide. C11 revealed high efficacy in acute animal seizure models such as the maximal electroshock model (MES), the pentylenetetrazole model (PTZ) and the 6 Hz (6 Hz, 32 mA) seizure model, as well as in the kindling model of epilepsy induced by repeated injection of PTZ in mice. In the aim of further in vivo C11 characterization, in the current studies we evaluated its influence on cognitive functions, neurodegeneration and neurogenesis process in mice after chronical treatment. All experiments were performed on 6 weeks old male C57/BL mice. The following drugs were used: C11, levetiracetam (LEV), ethosuximide (ETS) and lacosamide (LCM). We analyzed proliferation, migration and differentiation of newborn cells as well as neurodegenerative changes in a mouse brain after long-term treatment with aforementioned AEDs. Additionally, we evaluated changes in learning and memory functions in response to chronic C11, LEV, LCM and ETS treatment. C11 as well as LEV and ETS did not disturb the proliferation of newborn cells compared to the control mice, whereas LCM treatment significantly decreased it. Chronic AEDs therapy did not induce significant neurodegenerative changes. Behavioral studies with using Morris Water Maze test did not indicate any disturbances in the spatial learning and memory after C11 as well as LEV and ETS treatment in comparison to the control group except LCM mice where significant dysfunctions in time, distance and direct swim to the platform were observed. Interestingly, results obtained from in vivo MRI spectroscopy showed a statistically significant increase of one of the neurometabolites- N-acetyloaspartate (NAA) for LCM and LEV mice. A new hybrid compound C11 in contrast to LCM has no negative impact on the process of neurogenesis and neurodegeneration in the mouse hippocampus. Furthermore, chronic treatment with C11 turned out to have no negative impact on cognitive functions of treated mice, which, is certainly of great importance for further more advanced preclinical and especially clinical trials.
Collapse
|
7
|
Enhancing effect of aerobic training on learning and memory performance in rats after long-term treatment with Lacosamide via BDNF-TrkB signaling pathway. Behav Brain Res 2019; 370:111963. [PMID: 31116960 DOI: 10.1016/j.bbr.2019.111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
Aerobic training has a neuroprotective effect, reduces the risk of developing neurodegenerative diseases and facilitates functional recovery. The present study assesses the effect of aerobic training on cognitive functions, hippocampal BDNF/TrkB ligand receptor system expression and serum levels of BDNF and corticosterone in intact rats after chronic treatment with Lacosamide (LCM). Male Wistar rats were randomly divided into two groups. One group was exercised on a treadmill (Ex) and the other one was sedentary (Sed). Half of the rats from each group received saline (veh) while the other half - LCM. The rats underwent a month-long training and LCM treatment before being subjected to one active and two passive avoidance tests. Both trained groups increased significantly the number of avoidances compared with the sedentary animals during the learning session and on memory retention tests, while the number of avoidances of the LCM-treated rats was significantly lower in comparison with the saline-treated animals. Both passive avoidance tests revealed that trained animals spent more time in the lighted compartment or caused longer stay on the platform than did the sedentary rats during acquisition and short- and long-term memory retention tests. Aerobic training increased BDNF and TrkB hippocampal immunoreactivity. We found no significant difference between BDNF serum levels but corticosterone levels of the Sed-LCM rats were lower than those of the Sed-veh animals. Our results show that aerobic training increases the hippocampal BDNF/TrkB expression suggesting a role in preventing the negative effect of Lacosamide on cognitive functions in rats.
Collapse
|
8
|
Tchekalarova J, Atanasova D, Kortenska L, Lazarov N, Shishmanova-Doseva M, Galchev T, Marinov P. Agomelatine alleviates neuronal loss through BDNF signaling in the post-status epilepticus model induced by kainic acid in rat. Brain Res Bull 2019; 147:22-35. [PMID: 30738136 DOI: 10.1016/j.brainresbull.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, we have reported that while agomelatine (Ago) is unable to prevent development of epilepsy it exerts a strong neuroprotective and anti-inflammatory response in the KA post-status epilepticus (SE) rat model. In the present study, we aimed to explore whether the brain-derived neurotrophic factor (BDNF) in the hippocampus is involved in the neuroprotective effect of Ago against the KA-induced SE and epileptiform activity four months later in rats. Lacosamide (LCM) was used as a positive control. The EEG-recorded seizure activity was also evaluated in two treatment protocols. In Experiment#1, Ago given repeatedly at a dose of 40 mg/kg during the course of SE was unable neither to modify EEG-recorded epileptiform activity nor the video- and EEG-recorded spontaneous seizures four months later compared to LCM (50 mg/kg). However, both Ago and LCM inhibited the expression of BDNF in the mossy fibers and also prevented neuronal loss in the dorsal hippocampal and the piriform cortex after SE. In Experiment#2, acute injection of Ago and LCM on epileptic rats, characterized by high seizure rates, did not prevent EEG-recorded paroxysmal events while only LCM decreased either absolute or relative powers of gamma (28-60 Hz) and high (HI) (60-120 Hz) frequency bands to baseline in the frontal and parietal cortex, respectively. Our results suggest that the protection against neuronal loss in specific limbic regions and overexpressed BDNF in the mossy fibers resulting from the repeated treatment with Ago and LCM, respectively, during SE is not a prerequisite for alleviation of epileptogenesis and development of epilepsy. In addition, a reduction of gamma and HI bands in the frontal and parietal cortex is not associated with EEG-recorded paroxysmal events after acute injection of LCM.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| | | | | | - Pencho Marinov
- Institute of Information and Communication Technologies, BAS, Sofia, Bulgaria
| |
Collapse
|
9
|
Bryzgalov DV, Kuznetsova IL, Rogaev EI. Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. BIOCHEMISTRY (MOSCOW) 2018; 83:1124-1138. [PMID: 30472951 DOI: 10.1134/s0006297918090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer's disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.
Collapse
Affiliation(s)
- D V Bryzgalov
- Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, Paris, France.
| | - I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| |
Collapse
|