1
|
Padhy DS, Vesmaker K, Banerjee S. Neuroprotective potential of tranilast in streptozotocin-induced sporadic Alzheimer's disease model targeting TXNIP-NLRP3 inflammasome pathway. Int Immunopharmacol 2025; 156:114691. [PMID: 40273674 DOI: 10.1016/j.intimp.2025.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Sporadic Alzheimer's disease (sAD) is a progressive neurodegenerative disorder characterised by oxidative stress, neuroinflammation, mitochondrial dysfunction and cerebral insulin resistance. Even though approximately 95 % of AD cases are reported as sporadic, the exact pathogenesis remains sparse. Tranilast, an analogue of tryptophan metabolite, was initially endowed as an anti-allergic agent and used in multiple inflammatory ailments. Still, the molecular mechanisms targeting sAD are yet to be investigated. In the present study, we investigated the neuroprotective potential of tranilast by performing biochemical, molecular and histopathological assessments using both in vivo and in vitro experimental sAD models. Streptozotocin (STZ; 3 mg/kg) was bilaterally injected on day 1 and 3 through the intracerebroventricular (ICV) route to Sprague Dawley rats for the in vivo model induction. Spontaneous alternation test, novel object recognition test, and passive avoidance test were performed to assess the altered behavioural patterns in animals. Furthermore, human neuroblastoma cells (SHSY5Y) were exposed to STZ (1 mM) and tranilast for 24 h to validate the in vivo results. Three weeks of tranilast (30 and 100 mg/kg, p.o.) treatment improved neurobehavioural anomalies in ICV-STZ-treated rats by halting neuroinflammation and NLRP3 inflammasome activation caused by enhanced reactive oxygen species (ROS) and thioredoxin interaction protein (TXNIP) overexpression. The phosphorylated tau (p-tau S416) level was also increased in the ICV-STZ rat's hippocampus and reversed upon tranilast treatment. A high dose of tranilast (100 mg/kg) treatment sensitised hippocampal insulin signalling in ICV-STZ-treated rats. Furthermore, in cell culture studies, 24-h tranilast (30 and 100 μM) treatment reduced the mitochondrial ROS production and attenuated inflammasome activation in STZ-treated SHSY5Y cells. In summary, the findings of the study proclaim the neuroprotective potential of tranilast in STZ induced model of sAD by modulating the TXNIP-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India
| | - Kushal Vesmaker
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Sorial MES, Abdelghany RM, El Sayed NSED. Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing. Inflammopharmacology 2025; 33:2083-2094. [PMID: 40108007 PMCID: PMC11991970 DOI: 10.1007/s10787-025-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Sporadic Alzheimer's disease is a progressive neurodegenerative disorder affecting the central nervous system. Its main two hallmarks are extracellular deposition of aggregated amyloid beta resulting in senile plaques and intracellular hyperphosphorylated tau proteins forming neuro-fibrillary tangles. As those processes are promoted by the glycogen synthase kinase-3 enzyme, GSK3 inhibitors may be of therapeutic value in SAD. GSK3 is also inhibited by the action of insulin on insulin signaling. Insulin receptor desensitization in the brain is hypothesized to cause inhibition of insulin signaling pathway that ultimately causes cognitive deficits seen in SAD. In extant research, induction of cognitive impairment is achieved by intracerebroventricular injection of streptozotocin-a diabetogenic compound that causes desensitization to insulin receptors in the brain leading to the appearance of most of the SAD signs and symptoms. Valproic acid -a histone deacetylase inhibitor and anti-epileptic drug-has been recently studied in the management of SAD as a possible GSK3 inhibitor. Accordingly, the aim of the present study is to explore the role of multiple VPA doses on the downstream effects of the insulin signaling pathway in ICV STZ-injected mice and suggest a possible mechanism of VPA action. ICV STZ-injected mice showed deficiency in short- and long-term memory as well as increased anxiety, as established by open field test, Modified Y-maze, Morris water maze, and elevated plus maze neurobehavioral tests.
Collapse
Affiliation(s)
- Mirna Ezzat Sedrak Sorial
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo, Egypt.
| | - Ragwa Mansour Abdelghany
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo, Egypt
| | | |
Collapse
|
3
|
Saleh SR, Khamiss SE, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Thabet EH, Ghareeb DA, Awad D, El-Bessoumy AA. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in Streptozotocin-Induced Alzheimer's like Disease: Reduced oxidative damage and etiological Descriptors. Int J Pharm 2025; 669:125021. [PMID: 39631714 DOI: 10.1016/j.ijpharm.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Ipriflavone (IPRI), an isoflavone derivative, is clinically used to prevent postmenopausal bone loss in addition to its antioxidant and cognitive benefits. However, its poor aqueous solubility retained its bioavailability. New strategies have been developed to improve the bioavailability and solubility of neurological medications to enhance their potency and limit adverse effects. This study aimed to prepare targeted IPRI-poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled with Tet-1 peptide to increase the therapeutic potency of IPRI in a rat model of Alzheimer's disease (AD). Streptozotocin (STZ) exacerbates Alzheimer-related alterations by promoting central insulin resistance resulted from defective signaling pathways related to neuroinflammation and neurotoxicity. Bilateral intracerebroventricular (icv) injection of STZ was used to introduce the AD model. Icv-STZ injection significantly affected brain insulin, oxidative stress, inflammatory, and apoptotic indicators and caused behavioral abnormalities. STZ promoted the formation of amyloid β42 (Aβ42) by increasing BACE1 and reducing ADAM10 and ADAM17 expression levels. STZ also triggered the accumulation of neurofibrillary tangles and synaptic dysfunction, which are crucial for neurological impairments. Icv-STZ injection showed evident degenerative changes in the pyramidal cell layer and significantly reduced the count of viable cells in both CA1 and prefrontal cortex, indicating increased neuronal cell death. IPRI successfully ameliorated cognitive dysfunction by improving the phosphorylated forms of cAMP-response element-binding protein (pCREB) and extracellular signal-regulated kinase 1/2 (pERK1/2) related to synaptic plasticity. Targeted IPRI nanoparticles exceeded free IPRI potential in reducing oxidative stress, acetylcholinesterase/monoamine oxidase activities, Tau phosphorylation, and Aβ42 levels revealing less degenerative changes and increased viable neuron counts. IPRI-targeted nanoparticles improved the neuroprotective potential of free IPRI, making this strategy applicable to treat many neurodegenerative diseases. Finally, the in silico study predicted its ability to cross the BBB and to bind various protein targets in the brain.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Salma E Khamiss
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman H Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ashraf A El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
4
|
Huang J, Xu Z, Yu C, Liu L, Ji L, Qiu P, Li C, Zhou X. The volatile oil of Acorus tatarinowii Schott ameliorates Alzheimer's disease through improving insulin resistance via activating the PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156168. [PMID: 39486109 DOI: 10.1016/j.phymed.2024.156168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) presently stands as the most prevalent neurodegenerative disease. Existing research underscores the pivotal role of insulin signaling in the progression of AD. Acorus tatarinowii Schott (SCP), a traditional Chinese herbal, is employed for AD treatment in China. The volatile oil of Acorus tatarinowii Schott (SCP-oil) is the active component. However, its impact on AD-associated insulin resistance (AD-IR) remains inadequately investigated. PURPOSE This study used network pharmacology and experimental to investigate the effects and mechanisms of SCP-oil on cognitive improvement in AD by inhibiting IR. MATERIALS AND METHODS GC-Q/TOF-MS was employed to analyze the chemical composition of SCP-oil, while network pharmacology predicted the targets associated with SCP-oil in treating AD-IR to identify its regulatory mechanism. IR in the brain was simulated by intracerebroventricular streptozotocin administration (ICV-STZ). The neuroprotective and cognitive improvement effects of SCP-oil were assessed using the Morris water maze and hematoxylin and eosin, as well as Nissl staining. The expression levels of Neun and proteins related to p-tau, tau, amyloid-beta (Aβ), apoptosis, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured using immunohistochemistry and Western blotting, respectively. Dexamethasone (DXM)-induced HT22 cells were used for IR modeling. Chemical analysis determined the glucose consumption rate, and periodic acid Schiff staining was employed to detect glycogen deposition. Western Blots were utilized to investigate the expression of characteristic AD proteins, apoptosis-related proteins, and PI3K/AKT pathway-related proteins. The apoptosis rate was detected by flow cytometry. Reverse validation was further performed using LY294002 to evaluate the pharmacodynamic effects of SCP-oil after PI3K/AKT pathway inhibition. RESULTS A total of 25 chemical constituents were identified in SCP-oil. The network pharmacology findings indicated that SCP-oil holds the potential to ameliorate IR in the brain by activating the PI3K/AKT pathway, thereby improving AD. SCP-oil significantly improved ICV-STZ-induced cognitive dysfunction and pathological damage, reduced neuronal loss, Aβ deposition, and tau protein hyperphosphorylation, inhibited cell apoptosis, and activated the PI3K/AKT signaling pathway. Neuron loss, Aβ deposition, and tau protein hyperphosphorylation and cell apoptosis were further enhanced following treatment with LY294002, while the PI3K/AKT signaling pathway was further inhibited, and the protective effect of SCP-oil was weakened. CONCLUSION SCP-oil exhibited the potential to ameliorate brain IR, inhibiting cell apoptosis by activating the PI3K/AKT signaling pathway, thereby improving learning and memory ability.
Collapse
Affiliation(s)
- Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiwei Xu
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China; Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenshi Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Liang S, Zhao Z, Liu L, Zhang Y, Liu X. Research Progress on the Mechanisms of Protocatechuic Acid in the Treatment of Cognitive Impairment. Molecules 2024; 29:4724. [PMID: 39407652 PMCID: PMC11478363 DOI: 10.3390/molecules29194724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment (CI) is a type of mental health disorder that mainly affects cognitive abilities, such as learning, memory, perception, and problem-solving. Currently, in clinical practice, the treatment of cognitive impairment mainly focuses on the application of cholinesterase inhibitors and NMDA receptor antagonists; however, there is no specific and effective drug yet. Procatechuic acid (PCA) possesses various functions, including antibacterial, antiasthmatic, and expectorant effects. In recent years, it has received growing attention in the cognitive domain. Therefore, by summarizing the mechanisms of action of procatechuic acid in the treatment of cognitive impairment in this paper, it is found that procatechuic acid has multiple effects, such as regulating the expression of neuroprotective factors, inhibiting cell apoptosis, promoting the autophagy-lysosome pathway, suppressing oxidative stress damage, inhibiting inflammatory responses, improving synaptic plasticity dysfunction, inhibiting Aβ deposition, reducing APP hydrolysis, enhancing the cholinergic system, and inhibiting the excitotoxicity of neuronal cells. The involved signaling pathways include activating Pi3K-akt-mTor and inhibiting JNK, P38 MAPK, P38-ERK-JNK, SIRT1, and NF-κB/p53, etc. This paper aims to present the latest progress in research on procatechuic acid, including aspects such as its chemical properties, sources, pharmacokinetics, mechanisms for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuzhi Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Zhongmin Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Leilei Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Yan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
- The Youth Research and Innovation Team of TCM for the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| |
Collapse
|
6
|
Chauhan A, Dubey S, Jain S. Association Between Type 2 Diabetes Mellitus and Alzheimer's Disease: Common Molecular Mechanism and Therapeutic Targets. Cell Biochem Funct 2024; 42:e4111. [PMID: 39228117 DOI: 10.1002/cbf.4111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aβ) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3β in AD is intriguing. These proteins' association with T2DM and pancreatic β-cell failure suggests they might be therapeutic targets for both disorders.
Collapse
Affiliation(s)
- Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Sachin Dubey
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
7
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
8
|
Rajkumar M, Govindaraj P, Vimala K, Thangaraj R, Kannan S. Chitosan/PLA-loaded Magnesium oxide nanocomposite to attenuate oxidative stress, neuroinflammation and neurotoxicity in rat models of Alzheimer's disease. Metab Brain Dis 2024; 39:487-508. [PMID: 38085467 DOI: 10.1007/s11011-023-01336-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid-beta (Aβ) aggregation, neuroinflammation, oxidative stress, and dysfunction in the mitochondria and cholinergic system. In this study, the synthesis of chitosan-polylactic acid-loaded magnesium oxide nanocomposite (CH/PLA/MgONCs) was examined using the green precipitation method. The synthesized CH/PLA/MgONCs were confirmed by using the UV-Vis spectrum, FT-IR, SEM-EDAX, and physical properties. The experiments were carried out using male Wistar rats by injecting streptozotocin (STZ) bilaterally into the brain's ventricles through the intracerebroventricular (ICV) route at a dose of 3 mg/kg. We also evaluated the effects of CH/PLA/MgONCs at doses of 10 mg/kg. To assess the cognitive dysfunction induced by ICV-STZ, we performed behavioral, biochemical, and histopathological analyses. In our study results, UV-Vis spectrum analysis of CH/PLA/MgONCs showed 285 nm, FT-IR analyses confirmed that the various functional groups were present, and SEM-EDAX analysis confirmed that a cauliflower-like spherical shape, Mg and O were present. Treatment with CH/PLA/MgONCs (10 mg/kg) showed a significant improvement in spatial and non-spatial memory functions. This was further supported by biochemical analysis showing improved antioxidant enzyme (GSH, SOD, CAT, and GPx activity) activities that significantly attenuated cholinergic activity and oxidative stress. In the CH/PLA/MgONCs-treated group, significant improvement was observed in the mitochondrial complex activity. ICV-STZ-induced neuroinflammation, as indicated by increased levels of TNF-α, IL-6, and CRP, was significantly reduced by CH/PLA/MgONCs treatment. Additionally, CH/PLA/MgONCs treated histological results showed improved healthy neuronal cells in the brain. Furthermore, in silico studies confirm that these molecules have good binding affinity and inhibit Aβ aggregation. In conclusion, CH/PLA/MgONCs treatment reversed AD pathology by improving memory and reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. These findings recommend that CH/PLA/MgONCs are possible therapeutic agents to treat AD.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Prabha Govindaraj
- Department of Chemistry, St. Joseph's Institute of Technology, Chennai, 600 119, Tamil Nadu, India
| | - Karuppaiya Vimala
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| |
Collapse
|
9
|
Bali ZK, Nagy LV, Bruszt N, Bodó K, Engelmann P, Hernádi Z, Göntér K, Tadepalli SA, Hernádi I. Increased brain cytokine level associated impairment of vigilance and memory in aged rats can be alleviated by alpha7 nicotinic acetylcholine receptor agonist treatment. GeroScience 2024; 46:645-664. [PMID: 37994990 PMCID: PMC10828177 DOI: 10.1007/s11357-023-01019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Age-related neurocognitive disorders are common problems in developed societies. Aging not only affects memory processes, but may also disturb attention, vigilance, and other executive functions. In the present study, we aimed to investigate age-related cognitive deficits in rats and associated molecular alterations in the brain. We also aimed to test the effects of the alpha7 nicotinic acetylcholine receptor (nAChR) agonist PHA-543613 on memory as well as on the sustained attention and vigilance of aged rats. Short- and long-term spatial memories of the rats were tested using the Morris water maze (MWM) task. To measure attention and vigilance, we designed a rat version of the psychomotor vigilance task (PVT) that is frequently used in human clinical examinations. At the end of the behavioral experiments, mRNA and protein expression of alpha7 nAChRs, cytokines, and brain-derived neurotrophic factor (BDNF) were quantitatively measured in the hippocampus, frontal cortex, striatum, and cerebellum. Aged rats showed marked cognitive deficits in both the MWM and the PVT. The deficit was accompanied by increased IL-1beta and TNFalpha mRNA expression and decreased BDNF protein expression in the hippocampus. PHA-543613 significantly improved the reaction time of aged rats in the PVT, especially for unexpectedly appearing stimuli, while only slightly (non-significantly) alleviating spatial memory deficits in the MWM. These results indicate that targeting alpha7 nAChRs may be an effective strategy for the amelioration of attention and vigilance deficits in age-related neurocognitive disorders.
Collapse
Affiliation(s)
- Zsolt Kristóf Bali
- Grastyán Endre Translational Research Centre, University of Pécs, Pécs, Hungary.
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Lili Veronika Nagy
- Grastyán Endre Translational Research Centre, University of Pécs, Pécs, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Nóra Bruszt
- Grastyán Endre Translational Research Centre, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Hernádi
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Göntér
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Sai Ambika Tadepalli
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - István Hernádi
- Grastyán Endre Translational Research Centre, University of Pécs, Pécs, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Chen K, Yu G. Tetrahydroalstonine possesses protective potentials on palmitic acid stimulated SK-N-MC cells by suppression of Aβ1-42 and tau through regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 2024; 962:176251. [PMID: 38061471 DOI: 10.1016/j.ejphar.2023.176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The morbidity of Alzheimer's disease is currently on the rise worldwide, but no effective treatment is available. Cornus officinalis is an herb and edible plant used in traditional Chinese medicine, whose extract has neuroprotective properties. In this investigation, we endeavored to refine a systems pharmacology strategy combining bioinformatics analysis, drug prediction, network pharmacology, and molecular docking to screen tetrahydroalstonine (THA) from Cornus officinalis as a therapeutic component for AD. Subsequent in vitro experiments were validated using MTT assay, Annexin V-PI flow cytometry, Western blotting, and immunofluorescence analysis. In Palmitate acid-induced SK-N-MC cells, THA restored the impaired PI3K/AKT signaling pathway, regulated insulin resistance, and attenuated BACE1 and GSK3β activity. In addition, THA significantly reduced cell apoptosis rate, down-regulated relative levels of p-JNK/JNK, Bax/Bcl-2, cytochrome C, active caspase-3 and caspase-3, and attenuated Palmitate acid-induced Aβ1-42 and Tau generation. THA may regulate the phenotype of AD and reduce cell apoptosis by modulating the PI3K/AKT signaling pathway. This systematic analysis provides new ramifications concerning the therapeutic utility of tetrahydroalstonine for AD.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China
| | - Guran Yu
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
11
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
12
|
Ramírez-Cruz A, Gómez-González B, Baiza-Gutman LA, Manuel-Apolinar L, Ángeles-Mejía S, López-Cervantes SP, Ortega-Camarillo C, Cruz-López M, Gómez-Olivares JL, Díaz-Flores M. Nicotinamide, an acetylcholinesterase uncompetitive inhibitor, protects the blood‒brain barrier and improves cognitive function in rats fed a hypercaloric diet. Eur J Pharmacol 2023; 959:176068. [PMID: 37775016 DOI: 10.1016/j.ejphar.2023.176068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Oxidative stress and inflammation induced by abundant consumption of high-energy foods and caloric overload are implicated in the dysfunction of the blood‒brain barrier (BBB), cognitive impairment, and overactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These enzymes hydrolyse acetylcholine, affecting anti-inflammatory cholinergic signalling. Our aim was to evaluate whether nicotinamide (NAM) attenuates the impairment of the BBB and cognitive function, improving cholinergic signalling. Forty male rats were distributed into five groups: one group was fed a standard diet, and the remaining groups were fed a high-fat diet and a beverage with 40% sucrose (HFS; high-fat sucrose). In three of the HFS groups, the carbohydrate was replaced by drinking water containing different concentrations of NAM for 5 h every morning for 12 weeks. The biochemical profile, levels of stress and inflammation markers, cholinesterase activities, BBB permeability, and cognitive capacity were evaluated. The results showed that the HFS diet disturbed the metabolism of carbohydrates and lipids, causing insulin resistance. Simultaneously, AChE and BChE activities, levels of proinflammatory cytokines, oxidation of proteins and lipoperoxidation increased along with decreased antioxidant capacity in serum. In the hippocampus, increased activity of cholinesterases, protein carbonylation and lipoperoxidation were associated with decreased antioxidant capacity. Systemic and hippocampal changes were reflected in increased BBB permeability and cognitive impairment. In contrast, NAM attenuated the above changes by reducing oxidative stress and inflammation through decreasing cholinesterase activities, especially by uncompetitive inhibition. NAM may be a potential systemic and neuroprotective agent to mitigate cognitive damage due to hypercaloric diets.
Collapse
Affiliation(s)
- A Ramírez-Cruz
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| | - B Gómez-González
- Departamento de Biología de La Reproducción, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico.
| | - L A Baiza-Gutman
- Laboratorio de Biología Del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico.
| | - L Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| | - S Ángeles-Mejía
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| | - S P López-Cervantes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico.
| | - C Ortega-Camarillo
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| | - M Cruz-López
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| | - J L Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico.
| | - M Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez" Centro Médico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Rajkumar M, Navaneethakrishnan S, Muthukumar S, Thangaraj R, Sivanandam M, Vimala K, Kannan S. Gelatin/polyethylene glycol-loaded magnesium hydroxide nanocomposite to attenuate acetylcholinesterase, neurotoxicity, and activation of GPR55 protein in rat models of Alzheimer's disease. J Chem Neuroanat 2023; 133:102337. [PMID: 37708946 DOI: 10.1016/j.jchemneu.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease marked by mitochondrial dysfunction, amyloid-β (Aβ) aggregation, and neuronal cell loss. G-protein-coupled receptor 55 (GPR55) has been used as a promising target for insulin receptors in diabetes therapy, but GPR55's role in AD is still unidentified. Gelatin (GE) and polyethylene glycol (PEG) polymeric hydrogels are commonly used in the drug delivery system. Therefore, the aim of the present study was the preparation of magnesium hydroxide nanocomposite using Clitoria ternatea (CT) flower extract, GE, and PEG (GE/PEG/Mg(OH)2NCs) by the green precipitation method. The synthesized GE/PEG/Mg(OH)2NCs were used to determine the effect of GPR55 activation of intracerebroventricular administration on streptozotocin (ICV-STC)-induced cholinergic dysfunction, oxidative stress, neuroinflammation, and cognitive deficits. The GE/PEG/Mg(OH)2NCs were administered following bilateral ICV-STC administration (3 mg/kg) in experimental rats. Neurobehavioral assessments were performed using a Morris water maze (MWM) and a passive avoidance test (PA). Cholinergic and antioxidant activity, oxidative stress, and mitochondrial complex activity were estimated in the cortex and hippocampus through biochemical analysis. Inflammatory markers (TNF-α, IL-6, and IL-1β) were determined using the ELISA method. Our study results demonstrated that the GE/PEG/Mg(OH)2NCs treatment significantly improved spatial and non-spatial memory functions in behavioral studies. Moreover, the treatment with GE/PEG/Mg(OH)2NCs group significantly attenuated cholinergic dysfunction, oxidative stress, and inflammatory markers, and also highly improved anti-oxidant activity (GSH, SOD, CAT, and GPx) in the cortex and hippocampus regions. The western blot results suggest the activation of the GPR55 protein expression through GE/PEG/Mg(OH)2NCs. The histopathological studies showed clear cytoplasm and healthy neurons, effectively promoting neuronal activity. Furthermore, the molecular docking results demonstrated the binding affinity and potential interactions of the compounds with the AChE enzyme. In conclusion, the GE/PEG/Mg(OH)2NCs treated groups showed reduced neurotoxicity and have the potential as a therapeutic agent to effectively target AD.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Sundarraj Navaneethakrishnan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Sundarapandian Muthukumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Magudeeswaran Sivanandam
- Department of Physics, Center for Research and Development, KPR Institute of Engineering and Technology, Coimbatore, 641 407, Tamil Nadu, India
| | - Karuppaiya Vimala
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
14
|
Ciltas AC, Karabulut S, Sahin B, Filiz AK, Yulak F, Ozkaraca M, Karatas O, Cetin A. FGF-18 alleviates memory impairments and neuropathological changes in a rat model of Alzheimer's disease. Neuropeptides 2023; 101:102367. [PMID: 37506425 DOI: 10.1016/j.npep.2023.102367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology marked by amyloid beta (Aβ) accumulation, tau hyperphosphorylation, and progressive cognitive decline. Previous studies show that fibroblast growth factor 18 (FGF18) exerts a neuroprotective effect in experimental models of neurodegeneration; however, how it affects AD pathology remains unknown. This study aimed to ascertain the impact of FGF18 on the behavioral and neuropathological changes in the rat model of sporadic AD induced by intracerebroventricular (ICV) injection of streptozotocin (STZ). The rats were treated with FGF18 (0.94 and 1.88 pmol, ICV) on the 15th day after STZ injection. Their cognitive function was assessed in the Morris water maze and passive avoidance tests for 5 days from the 16th to the 21st days. Aβ levels and histological signs of neurotoxicity were detected using the enzyme-linked immunosorbent assay (ELISA) assay and histopathological analysis of the brain, respectively. FGF18 mildly ameliorated the STZ-induced cognitive impairment; the Aβ accumulation was reduced; and the neuronal damage including pyknosis and apoptosis was alleviated in the rat brain. This study highlights the promising therapeutic potential for FGF18 in managing AD.
Collapse
Affiliation(s)
- Arzuhan Cetindag Ciltas
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sebahattin Karabulut
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Bilal Sahin
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Fatih Yulak
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ozkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozhan Karatas
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ali Cetin
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital affiliated with the University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
15
|
Rajkumar M, Kannan S, Thangaraj R. Voglibose attenuates cognitive impairment, Aβ aggregation, oxidative stress, and neuroinflammation in streptozotocin-induced Alzheimer's disease rat model. Inflammopharmacology 2023; 31:2751-2771. [PMID: 37665449 DOI: 10.1007/s10787-023-01313-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease hallmarked by Amyloid-β (Aβ) aggregation, cognitive impairment, and neuronal and synaptic loss. In this study, AD was induced in male Wistar rats (n = 6) by the administration of intracerebroventricular-streptozotocin (ICV-STZ-3 mg/kg/day), and Voglibose (Vog) was administered at various doses (10, 25, and 50 mg/kg), while Galantamine (3 mg/kg) acted as a reference standard drug. Behavioral alterations in both spatial and non-spatial memory functions were evaluated in the experimental rats. At the end of the study, all experimental rats were sacrificed, and their brain parts, the cortex and hippocampus, were subjected to biochemical, western blot, and histopathological analysis. In our study results, the statistically significant dose-dependent results from the behavioral tests show the Voglibose-treated groups significantly improved (p < 0.0001) spatial and non-spatial memory functions when compared with ICV-STZ-treated group. Meanwhile, when compared with ICV-STZ-treated rats, treatment with Voglibose (10, 25, and 50 mg/kg) showed the activities of both acetylcholinesterase (AChE) and malondialdehyde (MDA) were significantly attenuated (p < 0.0001), while the operation of antioxidant enzymes was considerably enhanced (p < 0.0001). The molecular estimation showed that it significantly attenuates (p < 0.0001) the TNF-α, IL-1β, and CRP activity, and the western blot results demonstrate the significantly attenuated Aβ aggregation. The histopathological results showed that the Voglibose treatment had an effective improvement in clear cytoplasm and healthy neuronal cells. In conclusion, our results suggest that Voglibose has potent neuroprotective effects against the ICV-STZ-induced AD model. Furthermore, these results support the possibility of Voglibose as a therapeutic approach to improving cognitive function, suggesting that controlling Aβ aggregation might be a novel target for the development of AD.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India.
| | | |
Collapse
|
16
|
Giraudo A, Pallavicini M, Bolchi C. Small molecule ligands for α9* and α7 nicotinic receptors: a survey and an update, respectively. Pharmacol Res 2023; 193:106801. [PMID: 37236412 DOI: 10.1016/j.phrs.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The α9- and α7-containing nicotinic acetylcholine receptors (nAChRs) mediate numerous physiological and pathological processes by complex mechanisms that are currently the subject of intensive study and debate. In this regard, selective ligands serve as invaluable investigative tools and, in many cases, potential therapeutics for the treatment of various CNS disfunctions and diseases, neuropathic pain, inflammation, and cancer. However, the present scenario differs significantly between the two aforementioned nicotinic subtypes. Over the past few decades, a large number of selective α7-nAChR ligands, including full, partial and silent agonists, antagonists, and allosteric modulators, have been described and reviewed. Conversely, reports on selective α9-containing nAChR ligands are relatively scarce, also due to a more recent characterization of this receptor subtype, and hardly any focusing on small molecules. In this review, we focus on the latter, providing a comprehensive overview, while providing only an update over the last five years for α7-nAChR ligands.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
17
|
Akhtar A, Gupta SM, Dwivedi S, Kumar D, Shaikh MF, Negi A. Preclinical Models for Alzheimer's Disease: Past, Present, and Future Approaches. ACS OMEGA 2022; 7:47504-47517. [PMID: 36591205 PMCID: PMC9798399 DOI: 10.1021/acsomega.2c05609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
A robust preclinical disease model is a primary requirement to understand the underlying mechanisms, signaling pathways, and drug screening for human diseases. Although various preclinical models are available for several diseases, clinical models for Alzheimer's disease (AD) remain underdeveloped and inaccurate. The pathophysiology of AD mainly includes the presence of amyloid plaques and neurofibrillary tangles (NFT). Furthermore, neuroinflammation and free radical generation also contribute to AD. Currently, there is a wide gap in scientific approaches to preventing AD progression. Most of the available drugs are limited to symptomatic relief and improve deteriorating cognitive functions. To mimic the pathogenesis of human AD, animal models like 3XTg-AD and 5XFAD are the primarily used mice models in AD therapeutics. Animal models for AD include intracerebroventricular-streptozotocin (ICV-STZ), amyloid beta-induced, colchicine-induced, etc., focusing on parameters such as cognitive decline and dementia. Unfortunately, the translational rate of the potential drug candidates in clinical trials is poor due to limitations in imitating human AD pathology in animal models. Therefore, the available preclinical models possess a gap in AD modeling. This paper presents an outline that critically assesses the applicability and limitations of the current approaches in disease modeling for AD. Also, we attempted to provide key suggestions for the best-fit model to evaluate potential therapies, which might improve therapy translation from preclinical studies to patients with AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shraddha M. Gupta
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shubham Dwivedi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Devendra Kumar
- Faculty
of Pharmacy, DIT University, Uttarakhand, Dehradun 248009, India
| | - Mohd. Farooq Shaikh
- Neuropharmacology
Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
- E-mail:
| |
Collapse
|
18
|
Wang S, Ma Y, Huang Y, Hu Y, Huang Y, Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer's disease analyzed by network pharmacology and molecular docking prediction. Front Aging Neurosci 2022; 14:1052249. [PMID: 36570530 PMCID: PMC9772884 DOI: 10.3389/fnagi.2022.1052249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aβ) and Tau. Results and discussion In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Shishuai Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji’an, China,*Correspondence: Yuhui Hu,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Yushan Huang,
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China,Yi Wu,
| |
Collapse
|
19
|
do Amaral CL, Martins ÍDCA, Veras ACC, Simabuco FM, Ross MG, Desai M, Ignácio-Souza LM, Milanski M, Torsoni AS, Torsoni MA. Activation of the α7 Nicotinic Acetylcholine Receptor Prevents against Microglial-Induced Inflammation and Insulin Resistance in Hypothalamic Neuronal Cells. Cells 2022; 11:cells11142195. [PMID: 35883638 PMCID: PMC9323651 DOI: 10.3390/cells11142195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Neuronal hypothalamic insulin resistance is implicated in energy balance dysregulation and contributes to the pathogenesis of several neurodegenerative diseases. Its development has been intimately associated with a neuroinflammatory process mainly orchestrated by activated microglial cells. In this regard, our study aimed to investigate a target that is highly expressed in the hypothalamus and involved in the regulation of the inflammatory process, but still poorly investigated within the context of neuronal insulin resistance: the α7 nicotinic acetylcholine receptor (α7nAchR). Herein, we show that mHypoA-2/29 neurons exposed to pro-inflammatory microglial conditioned medium (MCM) showed higher expression of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α, in addition to developing insulin resistance. Activation of α7nAchR with the selective agonist PNU-282987 prevented microglial-induced inflammation by inhibiting NF-κB nuclear translocation and increasing IL-10 and tristetraprolin (TTP) gene expression. The anti-inflammatory role of α7nAchR was also accompanied by an improvement in insulin sensitivity and lower activation of neurodegeneration-related markers, such as GSK3 and tau. In conclusion, we show that activation of α7nAchR anti-inflammatory signaling in hypothalamic neurons exerts neuroprotective effects and prevents the development of insulin resistance induced by pro-inflammatory mediators secreted by microglial cells.
Collapse
Affiliation(s)
- Camila Libardi do Amaral
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
| | - Ísis de Cássia Alves Martins
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
| | - Alana Carolina Costa Veras
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil;
| | - Michael Glenn Ross
- The Lundquist Institute, David Geffen School of Medicine, Harbor-UCLA Medical Center, University of California, Los Angeles, CA 90095, USA; (M.G.R.); (M.D.)
| | - Mina Desai
- The Lundquist Institute, David Geffen School of Medicine, Harbor-UCLA Medical Center, University of California, Los Angeles, CA 90095, USA; (M.G.R.); (M.D.)
| | - Leticia Martins Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (C.L.d.A.); (Í.d.C.A.M.); (A.C.C.V.); (L.M.I.-S.); (M.M.); (A.S.T.)
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
- Correspondence: ; Tel.: +55-19-37016680
| |
Collapse
|